

Program: Diploma in Engineering and Technology		
Course Code: 1007	Course Title: Applied Chemistry Lab	
Semester: 1	Credits: 1	
Course Category: Basic Science		
Periods per week: 2 (L: 0 T: 0 P: 2)	Periods per semester: 30	

Course Objectives:

- To supplement the factual knowledge gained in the lectures by first hand manipulation of processes and apparatus.
- To develop scientific temper and help to apply the basic concepts and principles in solving engineering problems.

Course Prerequisites:

Topic	Program / Course Name
Basic knowledge in Chemistry	Secondary School

Course Outcomes:

On completion of the course, the student will be able to:

COn	Description	Duration (Hours)	Cognitive Level
CO1	Quantitatively analyse solutions accurately.	12	Applying
CO2	Standardise EDTA and analyse the hardness of water	4	Applying
CO3	Determine the pH of solutions using different techniques.	4	Applying
CO4	Construct different electrochemical cells and apply the principles of quantitative analysis using instruments	6	Applying
	Series Test	4	

CO - PO Mapping

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3						
CO2		3					
CO3	3						
CO4	3						

3-Strongly mapped, 2-Moderately mapped, 1-Weakly mapped

Course Outline

Module Outcomes	Description	Duration (Hours)	Cognitive Level	
CO1	To make quantitative analysis of solutions accurately.			
M1.01	Preparation of standard solution of oxalic acid.	2	Applying	
M1.02	Standardisation of hydrochloric acid using standard sodium carbonate solution. 2 App		Applying	
M1.03	Estimation of sodium hydroxide solution using solution of hydrochloric acid using methyl orange indicator.		Applying	
M1.04	Determine the strength of given potassium hydroxide solution by titrating against standard oxalic acid solution using phenolphthalein indicator.	2	Applying	
M1.05	Standardisation of KMnO4 solution using standard ferrous sulphate solution.	2	Applying	
M1.06	Estimation of Mohr's salt using standard KMnO4 solution.	2	Applying	
CO2	To standardise EDTA using ZnSO4 and to analyse quantitatively the hardness of water.			
M2.01	Standardisation of EDTA using ZnSO4 2		Applying	
M2.02	Volumetric estimation of total hardness of given water sample using standard EDTA solution. 2 Applying		Applying	
	Series Test– I	2		

CO3	To determine the pH of solutions using various techniques.		
M3.01	pH meter	2	Applying
M3.02	Universal indicator pH test paper	2	Applying
CO4	To construct different electrochemical cells used in developing batteries and apply the principles of quantitative analysis using instruments.		
M4.01	Determine the conductivity of a given water sample. 2 Applying		Applying
M4.02	To verify the first law of electrolysis of copper sulphate using copper electrodes.	2	Applying
M4.03	Construction and measurement of emf of electrochemical cell (Daniel cell).	2	Applying
	Series Test- II	2	

Text / Reference

T/R	Book Title/Author
T1	Text Book of Chemistry for Class XI & XII (Part-I, Part-II); N.C.E.R.T., Delhi, 2017-18.
R1	Dr. G. H. Hugar and Prof A. N. Pathak, Applied Chemistry Laboratory Practices, Vol. I and Vol. II, NITTTR, Chandigarh, Publications, 2013-14.
R2	Agnihotri, Rajesh, Chemistry for Engineers, Wiley India Pvt.Ltd., 2014.
R3	Jain & Jain, Engineering Chemistry, Dhanpat Rai and Sons; New Delhi

Online Resources

Sl.No	Website Link
1	www.chemguide.co.uk/atommenu.html (Atomic structure and chemical bonding)
2	https://www.wastewaterelearning.com/elearning/ (Water Treatment)
3	www.em-ea.org/guide%20books/book-2/2.1%20fuels%20and%20combustion.pdf (Fuel and Combustion)