
MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 1

Lab Manual

for

Microprocessor Lab

5138

Diploma In Computer Engineering

5th Semester

by

SITTTR

Kalamassery

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 2

STATE INSTITUTE OF TECHNICAL TEACHERS TRAINING AND RESEARCH

GENERAL INSTRUCTIONS

 Rough record and Fair record are needed to record the experiments conducted in the laboratory.

Rough records are needed to be certified immediately on completion of the experiment. Fair records

are due at the beginning of the next lab period. Fair records must be submitted as neat, legible, and

complete.

INSTRUCTIONS TO STUDENTS FOR WRITING THE FAIR RECORD

In the fair record, the index page should be filled properly by writing the corresponding experiment

number, experiment name , date on which it was done and the page number.

On the right side page of the record following has to be written:

1. Title: The title of the experiment should be written in the page in capital letters.

2. In the left top margin, experiment number and date should be written.

3. Aim: The purpose of the experiment should be written clearly.

4.Apparatus/Tools/Equipments/Components used: A list of the Apparatus/Tools /Equipments

/Components used for doing the experiment should be entered.

5. Principle: Simple working of the circuit/experimental set up/algorithm should be written.

6. Procedure: steps for doing the experiment and recording the readings should be briefly

described(flow chart/programs in the case of computer/processor related experiments)

7. Results: The results of the experiment must be summarized in writing and should be fulfilling

the aim.

8. Inference : Inference from the results is to be mentioned.

On the Left side page of the record following has to be recorded:

1. Circuit/Program: Neatly drawn circuit diagrams/experimental set up.

2. Design: The design of the circuit/experimental set up for selecting the components

 should be clearly shown if necessary.

3. Observations: i) Data should be clearly recorded using Tabular Columns.

ii) Unit of the observed data should be clearly mentioned

iii) Relevant calculations should be shown. If repetitive calculations are needed, only show a sample

calculation and summarize the others in a table.

4. Graphs : Graphs can used to present data in a form that show the results obtained, as one or

more of the parameters are varied. A graph has the advantage of presenting large

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 3

amounts of data in a concise visual form. Graph should be in a square format.

GENERAL RULES FOR PERSONAL SAFETY

1. Always wear tight shirt/lab coat , pants and shoes inside workshops.

2. REMOVE ALL METAL JEWELLERY since rings, wrist watches or bands, necklaces, etc. make

excellent electrodes in the event of accidental contact with electric power sources.

3. DO NOT MAKE CIRCUIT CHANGES without turning off the power.

4. Make sure that equipment working on electrical power are grounded properly.

5. Avoid standing on metal surfaces or wet concrete. Keep your shoes dry.

6. Never handle electrical equipment with wet skin.

7. Hot soldering irons should be rested in its holder. Never leave a hot iron unattended.

8. Avoid use of loose clothing and hair near machines and avoid running around inside lab .

TO PROTECT EQUIPMENT AND MINIMIZE MAINTENANCE:

DO: 1. SET MULTIRANGE METERS to highest range before connecting to an unknown source.

2. INFORM YOUR INSTRUCTOR about faulty equipment so that it can be sent for repair.

DO NOT: 1. Do not MOVE EQUIPMENT around the room except under the supervision of an

instructor.

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 4

CONTENTS

EXP

NO
NAME OF EXPERIMENT

PAGE
NO

1
FAMILIARIZATION OF ASSEMBLER,

DIRECTIVES AND SYSTEM INTERRUPTS
1

2 BYTE AND WORD DATA TRANSFER 13

3 BLOCK TRANSFER 15

4 ARITHMETIC OPERATIONS 17

5 ODD OR EVEN 20

6 MAXIMUM OF THREE NUMBERS 22

7 PACKED BCD TO ASCII 24

8 ASCII TO PACKED BCD 26

9 FACTORIAL 28

10 STRING REVERSE 30

11 STRING COMPARISON 33

12 UPPERCASE TO LOWERCASE 36

13 BINARY TO HEX 39

14 TRANSLATION 42

15 SORTING 46

16 MACRO 50

 APPENDIX-A (SYLLABUS) 52

 APPENDIX-B (INSTRUCTION SET) 53

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 5

EXP NO. 1 FAMILIARIZATION OF ASSEMBLER,

 DIRECTIVES AND SYSTEM INTERRUPTS

AIM

To familiarize with the NASM assembler, its directives, programming environment and

system interrupts.

OBJECTIVES

 To understand the NASM assembler and its directives.

 To understand the syntax of the assembly language statements.

 To understand the assembling and linking process.

 To understand the x86 programming model.

 To understand the system calls.

PROCEDURE

INTRODUCTION

Each personal computer has a microprocessor that manages the computer's arithmetical,

logical, and control activities. Each family of processors has its own set of instructions for

handling various operations. These set of instructions are called 'machine language

instructions'. A processor understands only machine language instructions, which are strings

of 1's and 0's. However, machine language is too obscure and complex for using in software

development. So, the low-level assembly language is designed for a specific family of

processors that represents various instructions in symbolic code and a more understandable

form.

BASIC SYNTAX

An assembly program can be divided into three sections:

 The .data section,

 The .bss section, and

 The .text section.

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 6

The .data Section

The data section is used for declaring initialized data or constants. This data does not change

at runtime. We can declare various constant values, file names, or buffer size, etc., in this

section. The syntax for declaring data section is:

section .data

The .bss Section

The bss section is used for declaring variables. The syntax for declaring bss section is:

section .bss

The .text section

The text section is used for keeping the actual code. This section must begin with the

declaration global _start, which tells the kernel where the program execution begins. The

syntax for declaring text section is:

section .text

global _start

_start:

Comments

Assembly language comment begins with a semicolon (;). It may contain any printable

character including blank. It can appear on a line by itself, like:

; This program displays a message on screen

or, on the same line along with an instruction, like:

add eax ,ebx ; adds ebx to eax

Assembly Language Statements

Assembly language programs consist of three types of statements:

 Executable instructions or instructions,

 Assembler directives or pseudo-ops, and

 Macros.

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 7

The executable instructions or simply instructions tell the processor what to do. Each

instruction consists of an operation code (opcode). Each executable instruction generates one

machine language instruction.

The assembler directives or pseudo-ops tell the assembler about the various aspects of the

assembly process. These are non-executable and do not generate machine language

instructions.

Macros are basically a text substitution mechanism.

Syntax of Assembly Language Statements

Assembly language statements are entered one statement per line. Each statement follows the

following format:

[label] mnemonic [operands] [;comment]

The fields in the square brackets are optional. A basic instruction has two parts, the first one

is the name of the instruction (or the mnemonic), which is to be executed, and the second are

the operands or the parameters of the command.

Compiling and Linking an Assembly Program

Make sure to set the path of nasm and ld binaries in the PATH environment variable. Now,

take the following steps for compiling and linking:

1. Type the program code using a text editor and save it as filename.asm.

2. Make sure that you are in the same directory as where you saved filename.asm.

3. To assemble the program, type

nasm -f elf filename.asm

 or

nasm –f elf –o filename.o filename.asm

4. If there is any error, it will be prompted about that at this stage. Otherwise, an

object file of the program named filename.o will be created.

5. To link the object file and create an executable file, type

ld --dynamic-linker /lib/ld-linux.so.2 –lc –o filename filename.o

6. Execute the program by typing ./filename

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 8

THE PROGRAMMING MODEL

The programming model of the 8086 through the Core2 is considered to be program visible

because its registers are used during application programming and are specified by the

instructions. Other registers are considered to be program invisible because they are not

addressable directly during applications programming, but may be used indirectly during

system programming. Only the 80286 and above contain the program-invisible registers used

to control and operate the protected memory system and other features of the microprocessor.

Figure illustrates the programming model of the 8086 through the Core2 microprocessor

including the 64-bit extensions.

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 9

Multipurpose Registers

RAX RAX is referenced as a 64-bit register (RAX), a 32-bit register (accumulator) (EAX),

a 16-bit register (AX), or as either of two 8-bit registers (AH and AL). Note that if an 8- or

16-bit register is addressed, only that portion of the 32-bit register changes without affecting

the remaining bits. The accumulator is used for instructions such as multiplication, division,

and some of the adjustment instructions. For these instructions, the accumulator has a special

purpose, but is generally considered to be a multipurpose register. In the 80386 and above,

the EAX register may also hold the offset address of a location in the memory system. In the

64-bit Pentium 4 and Core2, RAX holds a 64-bit offset address, which allows 1T (terra) byte

of memory to be accessed through a 40-bit address bus.

RBX RBX is addressable as RBX, EBX, BX, BH, or BL. The BX register (base index)

sometimes holds the offset address of a location in the memory system in all versions of the

microprocessor. In the 80386 and above, EBX also can address memory data. In the 64-bit

Pentium 4 and Core2, RBX can also address memory data.

RCX RCX, which is addressable as RCX, ECX, CX, CH, or CL, is a (count) general-

purpose register that also holds the count for various instructions. In the 80386 and above, the

ECX register also can hold the offset address of memory data. In the 64-bit Pentium 4, RCX

can also address memory data. Instructions that use a count are the repeated string

instructions (REP/REPE/REPNE); and shift, rotate, and LOOP/LOOPD instructions. The

shift and rotate instructions use CL as the count, the repeated string instructions use CX, and

the LOOP/LOOPD instructions use either CX or ECX. If operated in the 64-bit mode, LOOP

uses the 64-bit RCX register for the loop counter.

RDX RDX, which is addressable as RDX, EDX, DX, DH, or DL, is a (data) general-purpose

register that holds a part of the result from a multiplication or part of the dividend before a

division. In the 80386 and above, this register can also address memory data.

RBP RBP, which is addressable as RBP, EBP, or BP, points to a memory (base pointer)

location in all versions of the microprocessor for memory data transfers.

RDI RDI, which is addressable as RDI, EDI, or DI, often addresses (destination index)

string destination data for the string instructions.

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 10

RSI RSI is used as RSI, ESI, or SI. The source index register often (source index) addresses

source string data for the string instructions. Like RDI, RSI also functions as a general-

purpose register. As a 16-bit register, it is addressed as SI; as a 32-bit register, it is addressed

as ESI; and as a 64-bit register, it is addressed as RSI.

R8 through R15 These registers are only found in the Pentium 4 and Core2 if 64-bit

extensions are enabled. As mentioned, data in these registers are addressed as 64-, 32-, 16-, or

8-bit sizes and are of general purpose. Most applications will not use these registers until 64-

bit processors are common. Please note that the 8-bit portion is the rightmost 8-bit only; bits

8 to 15 are not directly addressable as a byte.

Special-Purpose Registers. The special-purpose registers include RIP, RSP, and RFLAGS;

and the segment registers include CS, DS, ES, SS, FS, and GS.

RIP RIP addresses the next instruction in a section of memory defined as (instruction

pointer) a code segment. This register is IP (16 bits) when the microprocessor operates in the

real mode and EIP (32 bits) when the 80386 and above operate in the protected mode. Note

that the 8086, 8088, and 80286 do not contain an EIP register and only the 80286 and above

operate in the protected mode. The instruction pointer, which points to the next instruction in

a program, is used by the microprocessor to find the next sequential instruction in a program

located within the code segment. The instruction pointer can be modified with a jump or a

call instruction. In the 64-bit mode, RIP contains a 40-bit address at present to address a 1T

flat address space.

RSP RSP addresses an area of memory called the stack. The stack memory (stack pointer)

stores data through this pointer and is explained later in the text with the instructions that

address stack data. This register is referred to as SP if used as a 16-bit register and ESP if

referred to as a 32-bit register.

RFLAGS RFLAGS indicate the condition of the microprocessor and control its operation.

Figure shows the flag registers of all versions of the microprocessor. The 8086–80286

contain a FLAG register (16 bits) and the 80386 and above contain an EFLAG register (32-

bit extended flag register). The 64-bit RFLAGS contain the EFLAG register, which is

unchanged in the 64-bit version.

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 11

The rightmost five flag bits and the overflow flag change after many arithmetic and logic

instructions execute. The flags never change for any data transfer or program control

operation.

C (carry) Carry holds the carry after addition or the borrow after subtraction. The carry flag

also indicates error conditions, as dictated by some programs and procedures

P (parity) Parity is a logic 0 for odd parity and a logic 1 for even parity. Parity is the count of

ones in a number expressed as even or odd.

A (auxiliary carry) The auxiliary carry holds the carry (half-carry) after addition or the

borrow after subtraction between bit positions 3 and 4 of the result. This highly specialized

flag bit is tested by the DAA and DAS instructions to adjust the value of AL after a BCD

addition or subtraction. Otherwise, the A flag bit is not used by the microprocessor or any

other instructions.

Z (zero) The zero flag shows that the result of an arithmetic or logic operation is zero. Ifv1,

the result is zero; if 0, the result is not zero.

S (sign) The sign flag holds the arithmetic sign of the result after an arithmetic or logic

instruction executes. If 1, the sign bit (leftmost bit of a number) is set or negative; if 0, the

sign bit is cleared or positive.

T (trap) The trap flag enables trapping through an on-chip debugging feature. If the T flag is

enabled (1), the microprocessor interrupts the flow of the program on conditions as indicated

by the debug registers and control registers. If the T flag is a logic 0, the trapping (debugging)

feature is disabled.

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 12

I (interrupt) The interrupt flag controls the operation of the INTR (interrupt request) input

pin. If 1, the INTR pin is enabled; if 0, the INTR pin is disabled. The state of the I flag bit is

controlled by the STI (set I flag) and CLI (clear I flag) instructions.

D (direction) The direction flag selects either the increment or decrement mode for the DI

and/or SI registers during string instructions. If 1, the registers are automatically

decremented; if 0, the registers are automatically incremented. The D flag is set with the STD

(set direction) and cleared with the CLD (clear direction) instructions.

O (overflow) Overflows occur when signed numbers are added or subtracted. An overflow

indicates that the result has exceeded the capacity of the machine. The result represents an

overflow condition indicated by the overflow flag for signed addition. For unsigned

operations, the overflow flag is ignored.

Segment Registers. Additional registers, called segment registers, generate memory

addresses when combined with other registers in the microprocessor. There are either four or

six segment registers in various versions of the microprocessor. A segment register functions

differently in the real mode when compared to the protected mode operation of the

microprocessor. In the 64-bit flat model, segment registers have little use in a program except

for the code segment register. Following is a list of each segment register, along with its

function in the system:

CS (code) The code segment is a section of memory that holds the code (programs and

procedures) used by the microprocessor. The code segment register defines the starting

address of the section of memory holding code. In real mode operation, it defines the start of

a 64Kbyte section of memory; in protected mode, it selects a descriptor that describes the

starting address and length of a section of memory holding code. The code segment is limited

to 64K bytes in the 8088–80286, and 4G bytes in the 80386 and above when these

microprocessors operate in the protected mode. In the 64-bit mode, the code segment register

is still used in the flat model, but its use differs from other programming modes.

DS (data) The data segment is a section of memory that contains most data used by a

program. Data are accessed in the data segment by an offset address or the contents of other

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 13

registers that hold the offset address. As with the code segment and other segments, the

length is limited to 64K bytes in the 8086–80286, and 4G bytes in the 80386 and above.

ES (extra) The extra segment is an additional data segment that is used by some of the string

instructions to hold destination data.

SS (stack) The stack segment defines the area of memory used for the stack. The stack entry

point is determined by the stack segment and stack pointer registers. The BP register also

addresses data within the stack segment.

FS and GS The FS and GS segments are supplemental segment registers available in the

80386–Core2 microprocessors to allow two additional memory segments for access by

programs. Windows uses these segments for internal operations, but no definition of their

usage is available.

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 14

DIRECTIVES

Allocating Storage Space for Initialized Data

The syntax for storage allocation statement for initialized data is:

[variable-name] define-directive initial-value [,initial-value]...

Where, variable-name is the identifier for each storage space. The assembler associates an

offset value for each variable name defined in the data segment. There are five basic forms of

the define directive:

Directive Purpose Storage Space

DB Define Byte allocates 1 byte

DW Define Word allocates 2 bytes

DD Define Doubleword allocates 4 bytes

DQ Define Quadword allocates 8 bytes

DT Define Ten Bytes allocates 10 bytes

Allocating Storage Space for Uninitialized Data

The reserve directives are used for reserving space for uninitialized data. It take a single

operand that specifies the number of units of space to be reserved. Each define directive has a

related reserve directive.

There are five basic forms of the reserve directive:

Directive Purpose

RESB Reserve a Byte

RESW Reserve a Word

RESD Reserve a Doubleword

RESQ Reserve a Quadword

REST Reserve a Ten Bytes

Defining Constants

The EQU Directive

The EQU directive is used for defining constants. The syntax is as follows:

CONSTANT_NAME EQU expression

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 15

The %assign Directive

The %assign directive can be used to define numeric constants like the EQU directive. This

directive allows redefinition. The syntax is:

%assign CONSTANT_NAME expression

This directive is case-sensitive.

The %define Directive

The %define directive allows defining both numeric and string constants. This directive is

similar to the #define in C. The syntax is:

%define CONSTANT_NAME expression

This directive also allows redefinition and it is case-sensitive.

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 16

SYSTEM CALLS

System calls are APIs for the interface between the user space and the kernel space.

Linux System Calls

We can make use of Linux system calls in our assembly programs. The following steps are

needed for using Linux system calls in our program:

Put the system call number in the EAX register.

Store the arguments to the system call in the registers EBX, ECX, etc.

Call the relevant interrupt (80h).

The result is usually returned in the EAX register.

There are six registers that store the arguments of the system call used. These are the EBX,

ECX, EDX, ESI, EDI, and EBP. These registers take the consecutive arguments, starting with

the EBX register. If there are more than six arguments, then the memory location of the first

argument is stored in the EBX register.

The following code snippet shows the use of the system call sys_exit:

mov eax,1 ; system call number (sys_exit)

int 0x80 ; call kernel

The following code snippet shows the use of the system call sys_write:

mov edx,4 ; message length

mov ecx,msg ; message to write

mov ebx,1 ; file descriptor (stdout)

mov eax,4 ; system call number (sys_write)

int 0x80 ; call kernel

RESULT

Familiarized with the assembler, directives and system calls.

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 17

EXP NO. 2 BYTE AND WORD DATA TRANSFER

AIM

Write a program to implement byte and word data transfer in different addressing modes.

OBJECTIVES

 To understand the use of data transfer instructions in various addressing modes.

 To understand the assembly language programming steps.

ALGORITHM

SECTION .data ; Section containing initialized data

Data1 db 25h

Data2 dw 1234h

Data3 db 0h

Data4 dw 0h

Data5 dw 2345h,6789h

SECTION .bss ; Section containing uninitialized data

SECTION .text ; Section containing code

global _start ; Linker needs this to find the entry point!

_start:

mov al,25 ; copy 25h into 8 bit al register

mov ax,2345 ; copy 2345h into 16 bit ax register

mov bx,ax ; copy the content of ax into bx register(16 bit)

mov cl,al ; copy the content of al into cl register

mov al,Data1 ; copies the byte contents of data segment memory location

 ; Data1 into 8 bit al

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 18

mov ax,Data2 ; copies the word contents of data segment memory

 ; location Data2 into 16 bit ax

mov Data3,al ; copies the al content into the byte contents of data

 ; segment memory location Data3

mov Data4,ax ; copies the ax content into the word contents of data

 ; segment memory location Data4

mov bx,offset Data5 ; the 16 bit offset address of ds memeory location Data5 is

 ; copied into bx

mov ax,[bx] ; copies the word content of data segment memory location

 ; addressed by bx into ax(register indirect addressing)

mov di,02h ; address element

mov ax,[bx+di] ; copies the word content of data segment memory location

 ; addressed by bx+di into ax(base plus indirect addressing)

mov ax,[bx+0002h] ; copies the word content of data segment (16 bit)

mov al,[di+2] ; register relative addressing

mov ax,[bx+di+0002h] ; copies the word content of data segment memory location

 ; addressed by bx+di+0002h into ax(16 bit)

mov eax,1 ; Specify Exit syscall

mov ebx,0 ; Return a code of zero

int 80H ; Make syscall to terminate the program

RESULT

 Studied the use of data transfer instructions in various addressing modes.

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 19

EXP NO. 3 BLOCK TRANSFER

AIM

Write a program to transfer a block of data from one location to another.

OBJECTIVES

 To understand the use of data transfer instructions.

 To understand the looping in assembly language.

ALGORITHM

SECTION .data ; Section containing initialized data

X DB 01H,02H,03H,04H,05H ; Initialize Data Segments Memory Locations

Y DB 05 DUP(0)

SECTION .text ; Section containing code

global _start ; Linker needs this to find the entry point!

_start:

mov cx,05h ; Load counter

lea si,X ; SI pointer pointed to top of the memory block

lea di,Y ; DI pointed to the top of the destination block

Up: mov bl,[si] ; Move the SI content to BL register

mov [di],bl ; Move the BL register to content of DI

inc si ; Update SI and DI

inc di

dec cx ; Decrement the counter till it becomes zero

jnz Up

mov eax,1 ; Make syscall to terminate the program

mov ebx,0

int 80h

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 20

OBSERVATIONS

Before execution

X 01

02

03

04

05

Y 00

00

00

00

00

After execution

X 01

02

03

04

05

Y 01

02

03

04

05

RESULT

 A block of data transferred from one location to another.

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 21

EXP NO. 4 ARITHMETIC OPERATIONS

AIM

Write a program to implement the basic arithmetic operations.

OBJECTIVES

 To understand the use of arithmetic instructions.

ALGORITHM

SECTION .data ; Section containing initialized data

Data1 dw 1234h

Data2 dw 5678h

Sum dw 0h

Diff dw 0h

Prod_Low dw 0h

Prod_High dw 0h

Quotient dw 0h

Reminder dw 0h

SECTION .bss ; Section containing uninitialized data

SECTION .text ; Section containing code

global _start

_start:

mov ax, Data1 ; Copy Data1 to ax

mov bx, Data2 ; Copy Data2 to bx

add ax, bx ; Perform addition

mov Sum, ax ; Copy result to Sum

mov ax, Data1 ; Perform subtraction

sub ax, bx

mov Diff, ax

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 22

mov ax, Data1 ; Perform multiplication

xor dx,dx

mul bx

mov Product_Low, ax

mov Product_High, dx

mov ax, Data1 ; Perform division

xor dx,dx

div bx

mov Quotient, ax

mov Reminder, dx

mov eax,1 ; Make system call to terminate the program

mov ebx,0

int 80H

OBSERVATIONS

Before execution

Data1 5678h

Data2 1234h

Sum 0h

Diff 0h

Prod_Low 0h

Prod_High 0h

Quotient 0h

Reminder 0h

After execution

Data1 5678h

Data2 1234h

Sum 68ach

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 23

Diff 4444h

Prod_Low 0060h

Prod_High 0626h

Quotient 0004h

Reminder 0da8h

RESULT

 Studied the use of arithmetic instructions.

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 24

EXP NO. 5 ODD OR EVEN

AIM

Write a program to check whether the given number is odd or even.

OBJECTIVES

 To understand the use of rotate instruction.

ALGORITHM

SECTION .data ; Section containing initialized data

 Num db 0h

 Msg1 db “Number is Odd$”

Msg2 db “Number is Even$”

SECTION .bss

SECTION .text

 global _start

_start:

; Write code to read Num

; Check odd or even using RCR

Check:

mov al, Num

rcr al,1

JC Print_Odd

Print_Even:

 ; Write code to print Msg2

jmp Exit

Print_Odd:

; Write code to print Msg1

Exit:

; System call to terminate the program.

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 25

OBSERVATIONS

1) Num 10

 Number is Even

2) Num 5

Number is Odd

RESULT

Verified the given number is odd or even.

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 26

EXP NO. 6 MAXIMUM OF THREE NUMBERS

AIM

Write a program to find the maximum of three numbers.

OBJECTIVES

 To understand the use of compare instruction.

 To understand the use of conditional branch instructions.

ALGORITHM

; Data section begins

SECTION .data

 Value1 dd 40

 Value2 dd 20

 Value3 dd 30

 MaxValue dd 0

SECTION .text

 global _start

_start:

;Write code here to read Value1, Value2, Value3

; Move the contents of variables

 mov ecx, [Value1] ; Copy first number into ecx

 cmp ecx, [Value2] ; Compare it with second number

 jg check_third_var ; If first number is large, go to next check

 mov ecx, [Value2] ; Otherwise copy second number into ecx

check_third_var:

 cmp ecx, [Value3] ; Compare the largest with third number

 jg _exit ; Keep the largest in ecx

 mov ecx, [Value3]

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 27

 _exit:

 mov MaxValue, ecx ; Store the largest in memory

;Write code here to display the largest number

 mov eax, 1 ; Terminate the program

 mov ebx, ecx

 int 80h

OBSERVATIONS

Before execution

Value1 40

Value2 20

Value3 30

MaxValue 0h

After execution

Value1 40

Value2 20

Value3 30

MaxValue 40

RESULT

 Verified the largest among the given three numbers.

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 28

EXP NO. 7 PACKED BCD TO ASCII

AIM

Write a program to convert packed BCD to ASCII

OBJECTIVES

 To understand the use of shift instruction.

 To understand the use of logical instructions.

ALGORITHM

; Data section begins

SECTION .data

 Packed_BCD db 45h

 ASCII_1 db 0h

 ASCII_2 db 0h

SECTION .bss

SECTION .text

global _start

_start:

; Write code to read packed BCD number

; Convert packed BCD to unpacked BCD and then ASCIIa

Pbcd_ascii:

mov al,Packed_BCD ; Copy packed BCD to ALa

and al,0f0h ; Mask the higher digit

mov cl,4 ; Convert to unpacked BCD

shr al,cl

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 29

 or al,30h ; Convert unpacked BCD to ASCII

mov ASCII_1, al

mov al, Packed_BCD ; Convert lower digit to ASCII

and al,0fh

or al,30h

mov ASCII_2,al

; Write code here to display ASCII_1 and ASCII_2

; Write code here to make system call to terminate the program

OBSERVATIONS

Before execution

Packed_BCD 45h

ASCII_1 0

ASCII_2 0

After execution

Packed_BCD 45h

ASCII_1 04

ASCII_2 05

RESULT

Verified the conversion of packed BCD to ASCII.

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 30

EXP NO. 8 ASCII TO PACKED BCD

AIM

Write a program to convert ASCII to packed BCD

OBJECTIVES

 To understand the use of shift instruction.

 To understand the use of logical instructions.

ALGORITHM

; Data section begins

SECTION .data

 ASCII_1 db 04h

 ASCII_2 db 05h

Packed_BCD db 0h

SECTION .bss

SECTION .text

global _start

_start:

; Write code to read ASCII digits

; Convert ASCII to packed BCD

Ascii_pbcd:

mov al,ASCII_1 ; Copy higher digit to AL

sub al,30h ; Convert to unpacked BCD

mov cl,4 ; Shift the digit to higher nibble

shl al,cl

mov Packed_BCD, al

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 31

mov al, ASCII_2 ; Copy lower digit to AL

sub al,30h ; Convert to unpacked BCD

or Packed_BCD, al ; Convert to Packed BCD

; Write code here to display packed BCD

; Write code here to make system call to terminate the program

OBSERVATIONS

Before execution

ASCII_1 04

ASCII_2 05

Packed_BCD 00

After execution

ASCII_1 04

ASCII_2 05

Packed_BCD 45h

RESULT

Verified the conversion of ASCII to packed BCD.

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 32

EXP NO. 9 FACTORIAL

AIM

Write a program to find the factorial of a number.

OBJECTIVES

 To understand the use of branch/loop instruction.

ALGORITHM

SECTION .data

 N dd 5h

 Fact_Low dd 0h

 Fact_High dd 0h

SECTION .bss

SECTION .text

global _start

_start:

; Write code here to read N

mov eax, N ; Copy N into accumulator

mov ecx, eax ; Copy N-1 into counter register

dec ecx

find_fact:

mul ecx ; Find factorial as N!=Nx(N-1)x(N-2)x...x1

loop find_fact

 mov Fact_Low, eax ; Store factorial

mov Fact_High, edx

; Write code here to display the factorial

; Write code here to terminate the program

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 33

OBSERVATIONS

Before execution

 N 5

 Fact_Low 0

 Fact_High 0

After execution

N 5

Fact_Low 120

Fact_High 0

RESULT

Verified factorial of given number.

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 34

EXP NO. 10 STRING REVERSE

AIM

Write a program to read a string and find its reverse.

OBJECTIVES

 To understand string read operation.

 To understand string reverse operation.

ALGORITHM

extern printf

SECTION .data

prompt db "Enter a string: ", 0

prompt_len equ $-prompt

format db "%s", 10, 0

LEN equ 50 ; constant for string length

SECTION .bss

;; declare space for storing strings

original_str: resb LEN

reverse_str: resb LEN

SECTION .text

 global _start

_start:

;; read string from user. just call write and read system calls

;; call write

mov eax, 4

mov ebx, 1

mov ecx, prompt

mov edx, prompt_len

int 80H

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 35

;; now read string

mov eax, 3

mov ebx, 1 ;1 for stdin

mov ecx, original_str

mov edx, LEN – 1

int 80H

mov ebx, 0

mov [original_str + eax], ebx ;null terminate the string

;; push original string to stack, byte by byte,

;; from beginning, untill 0 (null character '\0')

mov eax, 0

push_loop:

;; check for null character, that is end of string

cmp dword [original_str + eax], 0

jz end_push_loop

push dword [original_str + eax]

inc eax

jmp push_loop

end_push_loop:

;; since stack is first in last out, when we pop

;; characters of the string, we will get the string in reverse.

mov ecx, eax

mov eax, 0

pop_loop:

pop dword [reverse_str + eax]

inc eax

loop pop_loop

;; end the reverse string with null character

mov dword [reverse_str + eax], 0

;; call printf to print the string

push reverse_str

push format

call printf

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 36

;; exit the program

mov eax, 1

mov ebx, 0

int 80H

OBSERVATIONS

RESULT

 Verified reverse of the given string.

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 37

EXP NO. 11 STRING COMPARISON

AIM

Write a program to compare two strings.

OBJECTIVES

 To understand the string comparison.

ALGORITHM

SECTION .data

prompt1 db "Enter first string: ", 0

prompt1_len equ $-prompt1

prompt2 db "Enter second string: ", 0

prompt2_len equ $-prompt2

str_equal db "Two strings are equal", 10, 0

str_equal_len equ $-str_equal

str_not_equal db "Two strings are different", 10, 0

str_not_equal_len equ $-str_not_equal

LEN db 50

SECTION .bss

str1 : resb 50

str2 : resb 50

SECTION .text

 global _start

_start:

mov eax, 4

mov ebx, 1

mov ecx, prompt1

mov edx, prompt1_len

int 80h ;display enter first string

mov eax, 3

mov ebx, 1

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 38

mov ecx, str1

mov edx, LEN

int 80H

mov dword [str1 + eax], 0 ;read first string

mov eax, 4

mov ebx, 1

mov ecx, prompt2

mov edx, prompt2_len

int 80h ;display enter second string

mov eax, 3

mov ebx, 1

mov ecx, str2

mov edx, LEN

int 80H

mov dword [str2 + eax], 0 ;read second string

mov eax, 0

loop1:

mov ebx, [str1 + eax]

mov ecx, [str2 + eax]

cmp ebx, ecx

jnz print_not_equal

cmp ebx, 0

jz print_equal

inc eax

jmp loop1

print_not_equal:

mov eax, 4

mov ebx, 1

mov ecx, str_not_equal

mov edx, str_not_equal_len

int 80H ;display strings are not equal

jmp finish

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 39

print_equal:

mov eax, 4

mov ebx, 1

mov ecx, str_equal

mov edx, str_equal_len

int 80H ;display strings are equal

finish:

mov eax, 1

mov ebx, 0

int 80H

OBSERVATIONS

RESULT

 Verified the comparison of two strings.

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 40

EXP NO. 12 UPPERCASE TO LOWERCASE

AIM

Write a program to convert uppercase characters to lowercase.

OBJECTIVES

 To understand the string case conversion.

ALGORITHM

SECTION .data

 Snippet db "KANGAROO"

SECTION .text

 global _start

_start:

mov ebx,Snippet

mov eax,8

DoMore:

add byte [ebx],32

inc ebx

dec eax

jnz DoMore

 ;add necessary statements

OBSERVATIONS

RESULT

 Verified the conversion of uppercase characters to lower case.

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 41

EXP NO. 15 LOWERCASE TO UPPERCASE

AIM

Write a program to convert lowercase characters to uppercase.

OBJECTIVES

 To understand the string case conversion.

ALGORITHM

SECTION .bss

 Buff resb 1

SECTION .data

SECTION .text

 global _start

_start:

Read:

 mov eax, 3 ; Specify sys_read call

 mov ebx, 0 ; Specify File Descriptor 0: Standard Input

 mov ecx, Buff ; Pass address of the buffer to read to

 mov edx, 1 ; Tell sys_read to read one char from stdin

 int 80h ; Call sys_read

 cmp eax, 0 ; Look at sys_read’s return value in EAX

 je Exit ; Jump If Equal to 0 (0 means EOF) to Exit

 ; or fall through to test for lowercase

 cmp byte [Buff], 61h ; Test input char against lowercase 'a’

 jb Write ; If below 'a’ in ASCII chart, not lowercase

 cmp byte [Buff], 7Ah ; Test input char against lowercase 'z’

 ja Write ; If above 'z’ in ASCII chart, not lowercase

 ; At this point, we have a lowercase character

 sub byte [Buff], 20h ; Subtract 20h from lowercase to give uppercase...

 ; ...and then write out the char to stdout

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 42

Write:

 mov eax, 4 ; Specify sys_write call

mov ebx, 1 ; Specify File Descriptor 1: Standard output

mov ecx, Buff ; Pass address of the character to write

mov edx, 1 ; Pass number of chars to write

int 80h ; Call sys_write...

jmp Read ; ...then go to the beginning to get another character

Exit:

 mov eax, 1 ; Code for Exit Syscall

 mov ebx, 0 ; Return a code of zero to Linux

 int 80H ; Make kernel call to exit program

OBSERVATIONS

RESULT

 Verified the conversion of lowercase characters to uppercase.

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 43

EXP NO. 13 BINARY TO HEX

AIM

Write a program to convert binary value into hexadecimal strings.

OBJECTIVES

 To understand number format conversion.

ALGORITHM

SECTION .bss ; Section containing uninitialized data

 BUFFLEN equ 16 ; We read the file 16 bytes at a time

 Buff: resb BUFFLEN ; Text buffer itself

SECTION .data ; Section containing initialized data

 HexStr: db " 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00",10

 HEXLEN equ $-HexStr

 Digits: db "0123456789ABCDEF"

SECTION .text ; Section containing code

 global _start ; Linker needs this to find the entry point!

_start:

; Read a buffer full of text from stdin

Read:

 mov eax,3 ; Specify sys_read call

 mov ebx,0 ; Specify File Descriptor 0: Standard Input

 mov ecx,Buff ; Pass offset of the buffer to read to

 mov edx,BUFFLEN ; Pass number of bytes to read at one pass

 int 80h ; Call sys_read to fill the buffer

 mov ebp,eax ; Save # of bytes read from file for later

 cmp eax,0 ; If eax=0, sys_read reached EOF on stdin

 je Done ; Jump If Equal (to 0, from compare)

 ; Set up the registers for the process buffer step:

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 44

 mov esi,Buff ; Place address of file buffer into esi

 mov edi,HexStr ; Place address of line string into edi

 xor ecx,ecx ; Clear line string pointer to 0

 ; Go through the buffer and convert binary values to hex digits:

Scan:

 xor eax,eax ; Clear eax to 0

; Here we calculate the offset into HexStr, which is the value in ecx X 3

 mov edx,ecx ; Copy the character counter into edx

 shl edx,1 ; Multiply pointer by 2 using left shift

 add edx,ecx ; Complete the multiplication X3

; Get a character from the buffer and put it in both eax and ebx:

 mov al,byte [esi+ecx] ; Put a byte from the input buffer into al

 mov ebx,eax ; Duplicate the byte in bl for second nybble

; Look up low nybble character and insert it into the string:

 and al,0Fh ; Mask out all but the low nybble

 mov al,byte [Digits+eax] ; Look up the char equivalent of nybble

 mov byte [HexStr+edx+2],al ; Write LSB char digit to line string

; Look up high nybble character and insert it into the string:

 shr bl,4 ; Shift high 4 bits of char into low 4 bits

 mov bl,byte [Digits+ebx] ; Look up char equivalent of nybble

 mov byte [HexStr+edx+1],bl ; Write MSB char digit to line string

; Bump the buffer pointer to the next character and see if we’re done:

 inc ecx ; Increment line string pointer

 cmp ecx,ebp ; Compare to the number of chars in the buffer

 jna Scan ; Loop back if ecx is <= number of chars in buffer

; Write the line of hexadecimal values to stdout:

 mov eax,4 ; Specify sys_write call

 mov ebx,1 ; Specify File Descriptor 1: Standard output

 mov ecx,HexStr ; Pass offset of line string

 mov edx,HEXLEN ; Pass size of the line string

 int 80h ; Make kernel call to display line string

 jmp Read ; Loop back and load file buffer again

; All done! Let’s end this party:

Done:

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 45

 mov eax,1 ; Code for Exit Syscall

 mov ebx,0 ; Return a code of zero

 int 80H ; Make kernel call

OBSERVATIONS

RESULT

 Verified the binary to hex conversion.

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 46

EXP NO. 14 TRANSLATION

AIM

Write a program to convert all lowercase characters into uppercase and non printable

characters into spaces.

OBJECTIVES

 To understand the use of translation using XLAT.

ALGORITHM

SECTION .data ; Section containing initialized data

 StatMsg: db "Processing...",10

 StatLen: equ $-StatMsg

 DoneMsg: db "...done!",10

 DoneLen: equ $-DoneMsg

; The following translation table translates all lowercase characters to

; uppercase. It also translates all non-printable characters to spaces,

; except for LF and HT.

UpCase:

 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,09h,0Ah,20h,20h,20h,20h,20h

 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

 db 20h,21h,22h,23h,24h,25h,26h,27h,28h,29h,2Ah,2Bh,2Ch,2Dh,2Eh,2Fh

 db 30h,31h,32h,33h,34h,35h,36h,37h,38h,39h,3Ah,3Bh,3Ch,3Dh,3Eh,3Fh

 db 40h,41h,42h,43h,44h,45h,46h,47h,48h,49h,4Ah,4Bh,4Ch,4Dh,4Eh,4Fh

 db 50h,51h,52h,53h,54h,55h,56h,57h,58h,59h,5Ah,5Bh,5Ch,5Dh,5Eh,5Fh

 db 60h,41h,42h,43h,44h,45h,46h,47h,48h,49h,4Ah,4Bh,4Ch,4Dh,4Eh,4Fh

 db 50h,51h,52h,53h,54h,55h,56h,57h,58h,59h,5Ah,7Bh,7Ch,7Dh,7Eh,20h

 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 47

 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

; The following translation table is “stock“ in that it translates all

; printable characters as themselves, and converts all non-printable

; characters to spaces except for LF and HT.

Custom:

 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,09h,0Ah,20h,20h,20h,20h,20h

 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

 db 20h,21h,22h,23h,24h,25h,26h,27h,28h,29h,2Ah,2Bh,2Ch,2Dh,2Eh,2Fh

 db 30h,31h,32h,33h,34h,35h,36h,37h,38h,39h,3Ah,3Bh,3Ch,3Dh,3Eh,3Fh

 db 40h,41h,42h,43h,44h,45h,46h,47h,48h,49h,4Ah,4Bh,4Ch,4Dh,4Eh,4Fh

 db 50h,51h,52h,53h,54h,55h,56h,57h,58h,59h,5Ah,5Bh,5Ch,5Dh,5Eh,5Fh

 db 60h,61h,62h,63h,64h,65h,66h,67h,68h,69h,6Ah,6Bh,6Ch,6Dh,6Eh,6Fh

 db 70h,71h,72h,73h,74h,75h,76h,77h,78h,79h,7Ah,7Bh,7Ch,7Dh,7Eh,20h

 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

SECTION .bss ; Section containing uninitialized data

 READLEN equ 1024 ; Length of buffer

 ReadBuffer: resb READLEN ; Text buffer itself

SECTION .text ; Section containing code

 global _start ; Linker needs this to find the entry point!

_start:

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 48

; Display the “I’m working...“ message via stderr:

 mov eax,4 ; Specify sys_write call

 mov ebx,2 ; Specify File Descriptor 2: Standard error

 mov ecx,StatMsg ; Pass offset of the message

 mov edx,StatLen ; Pass the length of the message

 int 80h ; Make kernel call

; Read a buffer full of text from stdin:

read:

 mov eax,3 ; Specify sys_read call

 mov ebx,0 ; Specify File Descriptor 0: Standard Input

 mov ecx,ReadBuffer ; Pass offset of the buffer to read to

 mov edx,READLEN ; Pass number of bytes to read at one pass

 int 80h

 mov ebp,eax ; Copy sys_read return value for safekeeping

 cmp eax,0 ; If eax=0, sys_read reached EOF

 je done ; Jump If Equal (to 0, from compare)

; Set up the registers for the translate step:

 mov ebx,UpCase ; Place the offset of the table into ebx

 mov edx,ReadBuffer ; Place the offset of the buffer into edx

 mov ecx,ebp ; Place the number of bytes in the buffer into ecx

; Use the xlat instruction to translate the data in the buffer:

; (Note: the commented out instructions do the same work as XLAT;

; un-comment them and then comment out XLAT to try it!

translate:

 ; xor eax,eax ; Clear high 24 bits of eax

 mov al,byte [edx+ecx] ; Load character into AL for translation

 ; mov al,byte [UpCase+eax] ; Translate character in AL via table

 xlat ; Translate character in AL via table

 mov byte [edx+ecx],al ; Put the translated char back in the buffer

 dec ecx ; Decrement character count

 jnz translate ; If there are more chars in the buffer, repeat

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 49

; Write the buffer full of translated text to stdout:

write:

 mov eax,4 ; Specify sys_write call

 mov ebx,1 ; Specify File Descriptor 1: Standard output

 mov ecx,ReadBuffer ; Pass offset of the buffer

 mov edx,ebp ; Pass the # of bytes of data in the buffer

 int 80h ; Make kernel call

 jmp read ; Loop back and load another buffer full

; Display the “I’m done“ message via stderr:

done:

 mov eax,4 ; Specify sys_write call

 mov ebx,2 ; Specify File Descriptor 2: Standard error

 mov ecx,DoneMsg ; Pass offset of the message

 mov edx,DoneLen ; Pass the length of the message

 int 80h ; Make kernel call

; All done! Let’s end this party:

 mov eax,1 ; Code for Exit Syscall

 mov ebx,0 ; Return a code of zero

 int 80H ; Make kernel call

OBSERVATIONS

RESULT

 Studied the use of procedure.

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 50

EXP NO. 15 SORTING

AIM

Write a program to implement selection sort of an integer array.

OBJECTIVES

 To understand the use of procedure.

ALGORITHM

SECTION .data

 array db 89, 10, 67, 1, 4, 27, 12, 34, 86, 3

 ARRAY_SIZE equ $ - array

 array_fmt db " %d", 0

 usort_str db "unsorted array:", 0

 sort_str db "sorted array:", 0

 newline db 10, 0

SECTION .text

 extern puts

 global _start

_start:

 push usort_str

 call puts

 add esp, 4

 push ARRAY_SIZE

 push array

 push array_fmt

 call print_array10

 add esp, 12

 push ARRAY_SIZE

 push array

 call sort_routine20

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 51

; Adjust the stack pointer

 add esp, 8

 push sort_str

 call puts

 add esp, 4

 push ARRAY_SIZE

 push array

 push array_fmt

 call print_array10

 add esp, 12

 jmp _exit

 extern printf

print_array10:

 push ebp

 mov ebp, esp

 sub esp, 4

 mov edx, [ebp + 8]

 mov ebx, [ebp + 12]

 mov ecx, [ebp + 16]

 mov esi, 0

push_loop:

 mov [ebp - 4], ecx

 mov edx, [ebp + 8]

 xor eax, eax

 mov al, byte [ebx + esi]

 push eax

 push edx

 call printf

 add esp, 8

 mov ecx, [ebp - 4]

 inc esi

 loop push_loop

 push newline

 call printf

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 52

 add esp, 4

 mov esp, ebp

 pop ebp

 ret

sort_routine20:

 push ebp

 mov ebp, esp

; Allocate a word of space in stack

 sub esp, 4

; Get the address of the array

 mov ebx, [ebp + 8]

; Store array size

 mov ecx, [ebp + 12]

 dec ecx

; Prepare for outer loop here

 xor esi, esi

outer_loop:

; This stores the min index

 mov [ebp - 4], esi

 mov edi, esi

 inc edi

inner_loop:

 cmp edi, ARRAY_SIZE

 jge swap_vars

 xor al, al

 mov edx, [ebp - 4]

 mov al, byte [ebx + edx]

 cmp byte [ebx + edi], al

 jge check_next

 mov [ebp - 4], edi

check_next:

 inc edi

 jmp inner_loop

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 53

swap_vars:

 mov edi, [ebp - 4]

 mov dl, byte [ebx + edi]

 mov al, byte [ebx + esi]

 mov byte [ebx + esi], dl

 mov byte [ebx + edi], al

 inc esi

 loop outer_loop

 mov esp, ebp

 pop ebp

 ret

_exit:

 mov eax, 1

 mov ebx, 0

 int 80h

OBSERVATIONS

RESULT

 Verified the sorting of numbers using procedure.

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 54

EXP NO. 16 MACRO

AIM

Write a program to read a string and display a greeting to user using macro.

OBJECTIVES

 To understand the use of macro.

ALGORITHM

SECTION .data

 prompt_str db 'Enter your name: '

 STR_SIZE equ $ - prompt_str

 greet_str db 'Hello '

 GSTR_SIZE equ $ - greet_str

SECTION .bss

 buff resb 32 ; Reserve 32 bytes of memory

; A macro with two parameters

; Implements the write system call

 %macro write 2

 mov eax, 4

 mov ebx, 1

 mov ecx, %1

 mov edx, %2

 int 80h

 %endmacro

; Implements the read system call

%macro read 2

 mov eax, 3

 mov ebx, 0

 mov ecx, %1

 mov edx, %2

 int 80h

%endmacro

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 55

SECTION .text

 global _start

_start:

 write prompt_str, STR_SIZE

 read buff, 32

 ; Read returns the length in eax

 push eax

 ; Print the hello text

 write greet_str, GSTR_SIZE

 pop edx

 ; edx = length returned by read

 write buff, edx

 _exit:

 mov eax, 1

 mov ebx, 0

 int 80h

OBSERVATIONS

Enter your name: MYNAME

Hello MYNAME

RESULT

 Verified string read and display greeting to the user using macro.

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 56

 APPENDIX-A

https://mail.gptcthirurangadi.in

MICROPROCESSOR LAB MANUAL COMPUTER ENGINEERING

MICROPROCESSOR LAB 57

APPENDIX-B

https://mail.gptcthirurangadi.in

