
Lab Manual

for

Microcontroller Lab

6139

Diploma In Computer Engineering

6th Semester
(2015 Revision)

AKNM GOVT. POLYTECHNIC COLLEGE
THIRURANGADI, MALAPPURAM-676317

https://mail.gptcthirurangadi.in

GENERAL INSTRUCTIONS

1. Submit both fair and rough records on every lab sessions.

2. Fair record should be very neat and easy to read.

3. Write program on left side of the record.

4. Use left side of the record for drawing Pin out diagrams and Digital circuits. All
others are to be in the right side.

5. Use HB pencil for drawing diagrams and circuits.

6. Submit records in time.

https://mail.gptcthirurangadi.in

EXP
#

TITLE AIM

01 LED INTERFACING - 1
To send one byte of data on to PORTB of ATMEGA32 thereby
understanding the operation of PORT as output. Write program in
C.

02
LED INTERFACING –

2

To send data from 00 to FF to PORTB of ATMEGA32 by
giving sufficient delay between out operation. Write program
in C.

03 LED INTERFACING 3
To blink LED connecetd to PORTB of ATMEGA32
ON and OFF
at 1sec interval with internal RC oscillator at 1Mhz.

04
BIT-WISE

OPERATORS

To blink LED connected to PB1 at 1sec interval while keeping
LED on PB7 on using AND, OR operations and with generalized
approach.

05
DATA CONVERSION –

PACKED BCD TO
ASCII

Write an AVR C program to convert a given packed BCD to
ASCII and display the bytes on PORTB and PORTC.

06
DATA CONVERSION –

ASCII TO PACKED
BCD

Write an AVR C program to convert give two ASCII digits into
packed BCD and display it on PORTB.

07
DATA CONVERSION –

BINARY(HEX) TO
DECIMAL

Convert Binary (hex) to decimal and display the digits on PORTB
with one second delay between each digit.

08 PORT PIN AS INPUT
To read switches connected to PORTD and output the contents to
LEDs connected to PORTB. Write program in C.

09 RELAY INTERFACE
To switch relay connected to PORTC ON/OFF at 1 second
interval.

10 7 SEGMENT DISPLAY
To display ‘0123’ on multiplexed seven segment cathode display
with segments connected to PB0 to PB6 and digits connected to
PD4, PD5,PD6 and PB7 respectively.

11
BIT-WISE

OPERATORS IN C

Write AVR C program to perform AND, OR, XOR operations on
two constant data and outputs the result to Port B with 5 seconds
delay between each result.

12
 ARITHMETIC

OPERATORS IN C

Write AVR C program to perform addition, subtraction and
multiplication operations on two constant data and outputs the
result to Ports B with sufficient delay between each.

13
LED INTERFACING- 4

ASSEMBLY

To send one byte of data on to PORTB of ATMEGA32 thereby
understanding the operation of PORT as output. Write program in
assembly language.

14
LED INTERFACING-5

ASSEMBLY

To send data from 00 to FF to PORTB of ATMEGA32 by giving
sufficient delay between out operation. Write program in assembly
language.

15
PORT PINS AS INPUT-

ASSEMBLY

To read switches connected to PORTD and output the contents to LEDs
connected to PORTB. Write program in assembly language.

https://mail.gptcthirurangadi.in

Experiment No: 1 DATE :

LED INTERFACING – 1

Aim:

Write an AVR C program to send one byte of data to PORTB of ATMEGA32 to understand

the operation of PORT as output.

Theory

ATMEGA ports are 8 bit wide. Each port has 3 eight bit registers associated. Each bit in these

registers configures pins of associated port. Bit 0 of these registers is associated with Pin 0 of the

port, Bit1 of these registers is associated with Pin1 and so on.

These three registers are

– DDRx register

– PORTx register

– PINx register

X may be replaced by A,B,C or D based on the PORT you are using.

DDRx register

DDRx (Data Direction Register) configures data direction of the port pins. Which, writing 0 to a bit

in DDRx makes corresponding port pin as input, while writing 1 to a bit in DDRx makes the

corresponding port pin as output.

EXAMPLE:

• to make all pins of port B as input, DDRA = 0b00000000;

• to make all pins of port A as output pins : DDRB= 0b11111111;

• to make lower nibble of port B as output and higher nibble as input :

 DDRB = 0b00001111; In hexadecimal representation, it can be written as DDRB = 0x0F;

Procedure

1. Develop the program using AVR Studio, and build its hex file.

2. Implement the circuit as shown in figure 1.1 and give the power.

3. Burn the hex file into ATMega32 chip using eXtreme Burner software.

4. Observe the result

Result:

The circuit has been implemented, program has been developed and created hex code, the

hex code is burned on the microcontroller, and observed the working the embedded system.

https://mail.gptcthirurangadi.in

Figure 1.1 : Circuit Diagram

Program
/*--
This program demonstrates the working of port
Author : WRITE YOUR NAME Date : 15.01.2018

Program set LED connected to PORTB alternately on
PB7 -0 PB6-1 PB5-0 PB4-1 PB3 -0 PB2-1 PB1-0 PB0-1
---*/

#include <avr/io.h> // standard AVR header

int main(void)
{

DDRB = 0xff; // setting PORTB as output
PORTB = 0B01010101; // setting value for PORTB

while (1); // indefinite loop
}
//---

https://mail.gptcthirurangadi.in

Experiment No: 2 DATE :

LED INTERFACING – 2

Aim:

To send data from 00 to FF to PORTB of ATMEGA32 by giving sufficient delay between

out operation. Write program in C.

Theory:

A data variable z is defined and initialized with zero, and during each iteration of the for

loop, the value of z is given to PORTB and increment z by one. The program never exits the for

loop because if you increment an unsigned char variable when it is 0xFF, it will become zero.

Procedure:

1. Develop the program using AVR Studio, and build its hex file.

2. Implement the circuit as shown in Figure 2.1 and give the power.

3. Burn the hex file into ATMega32 chip using eXtreme Burner software.

4. Observe the result

Result:

The circuit has been implemented, program has been developed and created hex code, the hex code

is burned on the microcontroller, and observed the working the embedded system.

https://mail.gptcthirurangadi.in

Figure 2.1 Circuit Diagram

Program

/* * 02_EXP_LED_C.c * * Created: 17/01/2018 17:40:43 * Author : CTS6 */

/* Write an AVR C pgm to send 00 to FF to Port B */
--

#include <avr/io.h> // standard AVR header

#include<util/delay.h> // delay header file

#define F_CPU 1000000UL /* it tells the compiler that the MC running at 1MHz. */

int main(void)

{

unsigned char z; // defining data variable z

DDRB = 0xFF; // setting PORTB as output

for(z=0;z<=255;z++) // data z varies from 0 to 255

{

PORTB = z; // sending z to PORTB

_delay_ms(10000); // time in ms

}

 return 0;

}

https://mail.gptcthirurangadi.in

Experiment No: 3 DATE :

LED INTERFACING – 3

Aim:

Write an AVR C program to blink LED connecetd to PORTB of ATMEGA32 ON and OFF

at 1sec interval with internal RC oscillator at 1Mhz.

Procedure:

1. Develop the program using AVR Studio, and build its hex file.

2. Burn the hex file into ATMega32 chip using eXtreme Burner software.

3. Observe the result

Theory:

PORTB is set as output and all the bits of PORTB is initialized as ON. A delay of one

second is set by using the timer function _delay_ms. After assigning the delay the value in PORTB

is negated and assigned to PORTB

 by using the command PORTB = ~ PORTB. This two commands are placed in an infinite while

loop.

Result:

The circuit has been implemented, program has been developed and created hex code, the hex code

is burned on the microcontroller, and observed the working of the embedded system.

Program:

https://mail.gptcthirurangadi.in

/*---

This program blink LED connecetd to PORTB ON and OFF at 1sec interval

with internal RC oscillator at 1Mhz

author: CTS6Date: 17.01.2018

---*/

#define F_CPU 1000000UL

#include <avr/io.h> // standard AVR header

#include <util/delay.h> // delay loop function

int main(void)

{

DDRB = 0xFF; // setting PORTB as output

PORTB = 0b11111111; // setting value for PORTB

while (1) // indefinite loop

{

_delay_ms(1000);

PORTB = ~ PORTB;

}

}

//---

https://mail.gptcthirurangadi.in

EX.NO. 04 DATE :

BIT-WISE OPERATORS

Aim: To blink LED connected to PB1 at 1sec interval while keeping LED on PB7 on

using AND, OR operations and with generalized approach.

Theory:

Previous concept of PORT setting by moving values to the entire port cannot be used

in

 practical cases as moving can change values of pins which are not desired to be

affected.

 Hence usually AND and OR logic operations are used to manipulate bits.

In order to set PB7 in this case

PORTB |= 0B10000000; // setting PB7

In order to clear PB1

PORTB &= 0B11111101; // clear PB1

This can be rewritten as

In order to set PB7 in this case

PORTB |= (PORTB <<7);

// setting PB7

Or as

PORTB |= (PORTB <<PB7); // setting PB7

PORTB &= ~(PORTB <<1); // clear PB1

Or as

PORTB &= ~(PORTB <<PB1);

 // clear PB1

Procedure

1. Develop the program using AVR Studio, and build its hex file.

2. Implement the circuit as shown in figure 3.1 and give the power.

3. Burn the hex file into ATMega32 chip using eXtreme Burner software.

4. Observe the result

Result

The circuit has been implemented, program has been developed and created hex

code, the hex code is burned on the microcontroller, and observed the working the

embedded system.

Program

https://mail.gptcthirurangadi.in

/*

* 04_EXP_LED_C.c

*

* Created: 07/02/2018 15:03:03

 * Author : Name */

/*

Aim : To blink LED connected to PB1 at 1sec interval while keeping LED on PB7 on

using AND, OR operations and with generalized approach. */

/* Program Blink LED connected to PB1 at 1sec interval while keeping

PB7 always high using bitwise AND, OR operations */

#include <avr/io.h>

#include <util/delay.h>

// standard AVR header

int main(void)

{

DDRB = 0xff; // setting PORTB as output

PORTB |= (1<<PB7); // setting value for PORTB

while (1) // indefinite loop

{

PORTB |= (1<<PB1); // setting Pin 1 of PORTB

_delay_ms(10000);

PORTB &= ~(1<<PB1); // resetting Pin 1 of PORTB

_delay_ms(10000);

}

}

EX.NO. 05 DATE :

https://mail.gptcthirurangadi.in

PACKED BCD TO ASCII

Aim: Convert Packed BCD 0x29 to ASCII and display the bytes on PORTB.

Theory: To convert packed BCD to ASCII, you must first convert it into unpacked BCD.

Then the unpacked BCD is tagged with 011 0000 (30H).

Packed BCD Unpacked BCD ASCII

0x29 0x02, 0x09 0x32, 0x39

00101001 00000010, 00001001 00110010, 00111001

Procedure

1. Develop the program using AVR Studio, and build its hex file.

2. Burn the hex file into ATMega32 chip using eXtreme Burner software.

3. Observe the result

Result:

The program has been developed and created hex code, the hex code is burned on the

microcontroller, and observed the working the embedded system.

Program

Copy your Program Here

https://mail.gptcthirurangadi.in

EX.NO. 06 DATE :

ASCII TO BCD

Aim: Convert ASCII digits “4” and “7” to packed BCD and display them on PORTB.

Theory: To convert ASCII to packed BCD, first convert it into unpacked BCD (to get rid

of 3), and then combine the numbers to make packed BCD. 4 and 7 on the keyboard

give 34H and 37H respectively. The goal is to produce 47H or “0100 0111”, which is

packed BCD.

Key ASCII Unpacked BCD Packed BCD

4 34 00000100

7 37 00000111 01000111 or 47H

Procedure

1. Develop the program using AVR Studio, and build its hex file.

2. Burn the hex file into ATMega32 chip using eXtreme Burner software.

3. Observe the result

Result: The program has been developed and created hex code, the hex code is

burned on the microcontroller, and observed the working the embedded system.

Program

Copy your Program Here

https://mail.gptcthirurangadi.in

EX.NO. 07 DATE :

BINARY (HEX) TO DECIMAL

Aim: Convert Binary (hex) to decimal and display the digits on PORTB with one

second delay between each digit.

Theory: Because the hexadecimal format is a convenient way of representing binary

data, we refer to the binary data as hex. The binary data 00-FFH converted to decimal

will give 000 to 255. One way to do that is to divide it by 10 and keep the reminder.

For example 11111101 or FDH is 253 in decimal. The following is one version of an

algorithm for conversion of hex(binary) to decimal.

Hex Quotient Reminder

FD/0A 19 3 (low digit) LSD

19/0A 2 5 (middle digit)

2 (high digit) MSD

Procedure

1. Develop the program using AVR Studio, and build its hex file.

2. Burn the hex file into ATMega32 chip using eXtreme Burner software.

3. Observe the result

Result: The program has been developed and created hex code, the hex code is

burned on the microcontroller, and observed the working the embedded system.

Program:

Copy your program Here

Hex to decimal can be generalized as

Copy your second program Here

https://mail.gptcthirurangadi.in

EX.NO. 08 DATE :

PORT PIN AS INPUT

Aim: To read switches connected to PORTD and output the contents to LEDs connected to PORTB.

Write program in C.

Theory:

PINx register

PINx (Port IN) register is used to read data from port pins. In order to read the data from port pin,

first you have to change port’s data direction to input. This is done by setting bits in DDRx to zero.

If port is made output, then reading PINx register will give you data that has been output on port

pins. There are two input modes. Either you can use port pins as tri stated inputs or you can activate

internal pull up. In order to enable internal pull up, you have to write 1 to the corresponding PORTx

register.

Procedure

1. Develop the program using AVR Studio, and build its hex file.

2. Implement the circuit as shown in figure 8.1 and give the power.

3. Burn the hex file into ATMega32 chip using eXtreme Burner software.

4. Observe the result

Result

The circuit has been implemented, program has been developed and created hex code, the hex code

is burned on the microcontroller, and observed the working the embedded system.

figure 8.1

https://mail.gptcthirurangadi.in

Program

/* * 08_EXP_INPUT_C.c * * Created: 07/02/2018 15:41:01 * Author : USER */

/*--

This program demonstrates the working of ports as input and output Program reads

switches connected to PORTD and output the values to PORTB

--*/

#include <avr/io.h>

#include<util/delay.h>

#define F_CPU 1000000UL

int main(void)

{

 DDRB = 0xFF; // DDRB as output

DDRD = 0x00; // DDRD as input

PORTD = 0xFF; //ACTIVATE INTERNAL PULL-UP RESISTORS

while(1)

{

_delay_ms(10); //Calling Delay /* When a key is pressed corresponding bit of PIND

register becomes zero. so to send a HIGH to LED for that key press, we need to give

complement of PIND value to the output port B. */

PORTB = ~PIND;

}

}

https://mail.gptcthirurangadi.in

EX.NO. 09 DATE :

RELAY INTERFACE

Aim: To switch relay connected to PORTC ON/OFF at 1 second interval.

Theory: In most the microcontroller applications, you may need to control external load. This can

be done using relays. Relays are electromagnetic switches that are available for various voltages

and current ratings. The selection of relays is done based on the current requirement. Usually relays

are available at 5, 12, 24 V DC coil voltage. Micro controller port pins can deliver 5V at a very low

current rating of 10mA. This power is sufficient only to drive an LED. For driving relays you need

to have driver circuit. Drivers are usually transistors in common emitter configuration.

A typical 230V, 6A relay can be driven using the given circuit. For higher current, you have to

decrease base resistance. You should remember that any transistor can be driven safely at the rated

collector current. For higher current requirement you can choose power transistors as demanded by

the case. Diode D acts as free wheel diode.

If you have more devices to control, it is advisable to go for open collector transistor array ULN

2004 or ULN 2003. They can be employed for 12V and 5V applications respectively. In our target

board we had provided you with an additional 12V buzzer which is connected to PC5 and relay to

PC4 respectively. ULN 2004/3 is provided with inbuilt free wheel diode.

Procedure

1. Develop the program using AVR Studio, and build its hex file.

2. Implement the circuit as shown in figure 3.1 and give the power.

3. Burn the hex file into ATMega32 chip using eXtreme Burner software.

4. Observe the result

Result

The circuit has been implemented, program has been developed and created hex code, the hex code

is burned on the microcontroller, and observed the working the embedded system.

https://mail.gptcthirurangadi.in

Program

/*

* 09_EXP_RELAY_C.c * * Created: 07/02/2018 10:55:47 * Author : user */

/*

This program will switch relay and buzzer connected to PORTC 4 and 5

respectively at 1 second interval */

#define F_CPU 8000000UL // clock at 8MHz

#include <avr/io.h> // standard AVR header

#include <util/delay.h> // delay loop function

#define relay PC4

#define buzzer PC5

void InitPort(void)

{

DDRC = 0xFF; // PORTC pins are defined as output

PORTC = 0X00; // Initializing PORTC with 0

}

int main(void)

{

InitPort (); // calling port initialization function

while (1) // indefinite loop

{

_delay_ms(3000);

PORTC |= (1<<buzzer); // buzzer ON

PORTC |= (1<<relay); // relay ON

_delay_ms(3000);

PORTC &= ~(1<<buzzer); // buzzer OFF

PORTC &= ~(1<<relay); // relay OFF

}

}

https://mail.gptcthirurangadi.in

Figure 9.1

Figure 9.2

https://mail.gptcthirurangadi.in

EX.NO. 10 DATE :
7SEGMENT DISPLAY

Aim: To display ‘0123’ on multiplexed seven segment cathode display with segments connected to

PB0 to PB6 and digits connected to PD4, PD5,PD6 and PB7 respectively.

Theory

Seven segment displays are available in common anode and common cathode configuration. They

are usually used in multiplexed configuration. Multiplexing LED displays can make them more

efficient by using fewer components, simplifying the printed circuit board, and consuming less

power. One segment from each of the digits is connected to a common line which is controlled by a

single output pin from the microcontroller. This is done for each segment on a digit, so only seven

output drive pins are needed for a multi-digit seven-segment display panel to control all the

segments.

One digit is activated at a time using this method, as each digit is enabled one at a time in sequence

by a separate signal which connects to the common cathode (or common anode) pin on a digit.

There would be a separate control line from the microcontroller output port for each digit on the

display panel. The segment data lines are updated for each digit as it is selected by its separate digit

select control line. This makes sure that each digit on the panel displays the intended information,

which could be a number.

The brightness of a panel is lower on a multiplexed panel because of this on-off duty cycle, but the

light intensity can be increased to an acceptable level by a small increase in LED current. LED

update frequency can be made high enough so that there wouldn't be any noticeable flickering.

Procedure

1. Develop the program using AVR Studio, and build its hex file.

2. Implement the circuit as shown in figure 10.1 and give the power.

3. Burn the hex file into ATMega32 chip using eXtreme Burner software.

4. Observe the result

Result

The circuit has been implemented, program has been developed and created hex code, the hex code

is burned on the microcontroller, and observed the working the embedded system.

Program

https://mail.gptcthirurangadi.in

/* * 10_EXP_7SEG_NEW.c * * Created: 07/02/2018 18:56:14 * Author : user*/

 /* Digit select PD4 PD5 PD6 PB7; segment to PB0 TO PB6 */

Digit select PD4 PD5 PD6 PB7 segment to PB0 TO PB6

Segments F - PB6 A - PB5 B - PB4 C - PB3 D - PB2 E - PB1 G - PB0

Digit 4 - PD4 Digit 3 - PD5 Digit 2 - PD6 Digit 1 - PB7

---*/

#define F_CPU 8000000UL // clock @ 8MHz

#include <avr/io.h> // standard AVR header

#include <util/delay.h> // delay loop function

int main(void)

{

DDRB = 0xff; // setting PORTB as output

https://mail.gptcthirurangadi.in

DDRD= 0xff; // setting PORTD as output

PORTD = 0xff; // all set to deselect digit

while (1) // indefinite loop

{

PORTB = 0x00; // clearing all segments

PORTD = PORTD | 0xF0; // disabling all digits

PORTD = PORTD & 0xE0; // selecting digit connected to PD4

PORTB = 0xFE; // display digit as 0

_delay_ms(1); // 1 msec delay

PORTB = 0x00; // clearing all segments

PORTD = PORTD | 0xF0; // disabling all digits

PORTD = PORTD & 0xD0; // selecting digit connected to PD5

PORTB = 0xB0; // display digit as 1

_delay_ms(1);

PORTB = 0x00; // clearing all segments

PORTD = PORTD | 0xF0; // disabling all digits

PORTD = PORTD & 0xB0; // selecting digit connected to PD6

PORTB = 0xED; // display digit as 2

https://mail.gptcthirurangadi.in

_delay_ms(1);

PORTB = 0xFF; // clearing all segments

PORTD = PORTD | 0xF0; // dissabling all digits

PORTB = 0x79; // display digit as 3

_delay_ms(1);

PORTB = PORTB | 0xFF; // disabling all digit to PB7

}

}

//---

Figure 10.1

https://mail.gptcthirurangadi.in

EX.NO. 11 DATE :
BIT-WISE OPERATORS IN C

Aim: Write AVR C program to perform AND, OR, XOR operations on two constant
data and outputs the result to Ports B with 5 seconds delay between each result.

Theory

Table : Some Bit-wise Logic Operators for C

Procedure
1. Develop the program using AVR Studio, and build its hex file.
2. Implement the circuit and give the power.
3. Burn the hex file into ATMega32 chip using eXtreme Burner software.
4. Observe the result

Result
The circuit has been implemented, program has been developed and created hex
code, the hex code is burned on the microcontroller, and observed the working the
embedded system.

https://mail.gptcthirurangadi.in

Program

/*
 * Write AVR C program to perform AND, OR, XOR operations
 * on two constant data and outputs the result to Ports B, C and D
 *
 * Created: 18/01/2018 22:11:44
 * Author : ctS6
 */

#include <avr/io.h>
#include<util/delay.h>
#define DATA1 0X35
#define DATA2 0X0F
#define DATA3 0X04
#define DATA4 0X68
#define DATA5 0X54
#define DATA6 0X78

int main(void)
{

DDRB = 0xFF; // make Port B output

PORTB = DATA1 & DATA2; //ANDing
_dealy_ms(5000);
PORTB = DATA3 | DATA4; //Oring
_dealy_ms(5000);
PORTB = DATA5 ^ DATA6; //XORing
_dealy_ms(5000);

 while (1)
 {
 }

return 0;
}

https://mail.gptcthirurangadi.in

EX.NO. 12 DATE :
ARITHMETIC OPERATORS IN C

Aim: Write AVR C program to perform addition, subtraction and multiplication
operations on two constant data and outputs the result to Ports B with 5s delay
between each result.

Theory

Some Data Types widely used by C compilers

Procedure
1. Develop the program using AVR Studio, and build its hex file.
2. Implement the circuit and give the power.
3. Burn the hex file into ATMega32 chip using eXtreme Burner software.
4. Observe the result

Result
The circuit has been implemented, program has been developed and created hex
code, the hex code is burned on the microcontroller, and observed the working the
embedded system.

https://mail.gptcthirurangadi.in

Program
/*
 * EXP# 12
 * ARITHMETIC OPERATORS IN C
 *
 * GccApplication1.c
 *
 * Created: 19/02/2018 06:40:02
 * Author : ctS6
 */

#include <avr/io.h>
#include <util/delay.h>

#define DATA1 7
#define DATA2 3
#define DATA3 0XFF
#define DATA4 0X1
#define DATA5 5
#define DATA6 2

int main(void)
{
 DDRB = 0xFF; // make Port B output

 PORTB = DATA1 + DATA2; //ADDITION
 _delay_ms(5000);
 PORTB = DATA3 - DATA4; //SUBTRACTION
 _delay_ms(5000);
 PORTB = DATA5 * DATA6; //MULTIPLICATION
 while (1)
 {
 }
}

https://mail.gptcthirurangadi.in

EX.NO. 13 DATE :
LED INTERFACING - 4

Aim: To send one byte of data on to PORTB of ATMEGA32 thereby understanding
the operation of PORT as output. Write program in assembly language.

Theory

i. .include
The .include directive tells the AVR assembler to add the content of a
file to our program.

ii. .org
The .org directive is used to indicate the beginning of address.

iii. LDI instruction
The LDI instruction copies the 8-bit data K into the general purpose
registers Rd (16≤d≤31). It has the following format:
LDI Rd, K

iv. OUT instruction
The OUT instruction tells the CPU to store the GPR to the I/O register.
OUT A, Rr ; store register to I/O location (0 ≤ r ≤ 31), (0 ≤ A
≤63)

v. RJMP instruction
It is a two byte unconditional branch instruction to jump within -2048 to
+2048 words of memory relative to the address of the current PC.

Procedure
5. Develop the program using AVR Studio, and build its hex file.
6. Implement the circuit as shown in figure 2.1 and give the power.
7. Burn the hex file into ATMega32 chip using eXtreme Burner software.
8. Observe the result

Result
The circuit has been implemented, program has been developed and created hex
code, the hex code is burned on the microcontroller, and observed the working the
embedded system.

https://mail.gptcthirurangadi.in

Program

;EXP. NO. 13
;Aim: To send one byte of data on to PORTB of ATMEGA32
; File Name: 13_EXP_LED_ASM.asm
; Created: 08/02/2018 14:36:28
; Author :
; Register No :

 .include "M32DEF.inc"
 .ORG 0

;---------Setting Port B as output-----------------
LDI R16,0XFF
OUT DDRB,R16

;-------sending 11011011 to port B
LDI R16,0B11011011
OUT PORTB,R16

L: RJMP L ; INFINITE LOOP

Figure 13.1 : Circuit Diagram

https://mail.gptcthirurangadi.in

EX.NO. 14 DATE :
LED INTERFACING - 5

Aim: To send data from 00 to FF to PORTB of ATMEGA32 by giving sufficient
delay between out operation. Write program in ASM language.

Theory

vi. CALL instruction
It calls a subroutine. When a subroutine is called, the processor first
saves the address of the instruction just below the CALL instruction on
the stack, and then transfers control to that subroutine.

vii. RET instruction
When the RET instruction at the end of the subroutine is executed, the
top location of the stack is copied back to the PC and SP is incremented.
i.e;, the address of the instruction below the CALL is loaded into the PC,
and the instruction below the CALL is executed.

viii. BRNE instruction
The BRNE (branch if not equal) instruction uses the zero flag in the
status register. If the zero flag is set, it jumps to the target location.

Procedure
9. Develop the program using AVR Studio, and build its hex file.
10.Implement the circuit as shown in figure 3.1 and give the power.
11.Burn the hex file into ATMega32 chip using eXtreme Burner software.
12.Observe the result

Result
The circuit has been implemented, program has been developed and created hex
code, the hex code is burned on the microcontroller, and observed the working the
embedded system.

https://mail.gptcthirurangadi.in

Program
; 14_EXP_LED_ASM.asm
; Created: 08/02/2018 18:13:27
; Author : cts6
;sending 00 to FF to Port B

.include "M32DEF.inc"

 .ORG 0 ; starting address of the code
;---------Initializing STACK POINTER with last SRAM location ----

LDI R16, HIGH(RAMEND)
OUT SPH, R16
LDI R16, LOW(RAMEND)
OUT SPL, R16

;---------Setting Port B as output-----------------
LDI R16,0XFF
OUT DDRB,R16

;-------sending 00 to ff to port B --------------
L: INC R16

OUT PORTB,R16
CALL DELAY
RJMP L

;-------------DELAY SUBROUTINE --------------------------
; --- Adjust the initial values of R17, R18, R19 to correct delay
.ORG 0X300
DELAY: LDI R17, 0XF
AGAIN1: LDI R18, 0XFF
AGAIN2: LDI R19, 0XFF
AGAIN3: NOP

NOP
NOP
NOP
NOP
NOP
DEC R19
BRNE AGAIN3
DEC R18
BRNE AGAIN2
DEC R17
BRNE AGAIN1
RET

https://mail.gptcthirurangadi.in

Figure 14.1 : Circuit Diagram

https://mail.gptcthirurangadi.in

EX.NO. 15 DATE :
Port pins as input- Assembly

Aim: To read switches connected to PORTD and output the contents to LEDs
connected to PORTB. Write program in ASM.

Theory

PINx register

PINx (Port IN) register is used to read data from port pins. In order to read the data
from port pin, first you have to change port’s data direction to input. This is done by
setting bits in DDRx to zero. If port is made output, then reading PINx register will
give you data that has been output on port pins. There are two input modes. Either
you can use port pins as tri stated inputs or you can activate internal pull up. In order
to enable internal pull up, you have to write 1 to the corresponding PORTx register.

IN instruction

The IN instruction tells the CPU to load one byte from an I/O register to the GPR

OUT instruction

The OUT instruction tells the CPU to store one byte from GPR to the I/O .

Procedure
13.Develop the program using AVR Studio, and build its hex file.
14.Implement the circuit as shown in figure 3.1 and give the power.
15.Burn the hex file into ATMega32 chip using eXtreme Burner software.
16.Observe the result

Result
The circuit has been implemented, program has been developed and created hex
code, the hex code is burned on the microcontroller, and observed the working the
embedded system.

https://mail.gptcthirurangadi.in

Program

;
; 15_EXP_INPUT_ASM.asm
;
; Created: 09/02/2018 16:06:08
; Author : cts6
;

;This program demonstrates the working of ports as input and
output
;Program reads switches connected to PORTD
;and output the values to PORTB

.include "M32DEF.inc"

 .ORG 0 ; starting address of the code

;---------Initializing STACK POINTER with last SRAM location ----
LDI R16, HIGH(RAMEND)
OUT SPH, R16
LDI R16, LOW(RAMEND)
OUT SPL, R16

;---------Setting Port B as output-----------------
LDI R16,0XFF
OUT DDRB,R16

;---------Setting Port D as input-----------------
OUT PORTD,R16 ; activating pull up register
LDI R16,0X00
OUT DDRD,R16

;-------INPUTTING AND OUTPUTTING --------------
L:

IN R16, PIND ; Load Data from Port D to R16
COM R16 ; complementing R16
OUT PORTB,R16 ; sending R16 to output Port B
CALL DELAY ; Calling delay
RJMP L

;-------------DELAY SUBROUTINE --------------------------
; --- Adjust the initial values of R17, R18, R19 to correct delay
.ORG 0X300

https://mail.gptcthirurangadi.in

DELAY: LDI R17, 0X1
AGAIN1: LDI R18, 0X1
AGAIN2: LDI R19, 0XF
AGAIN3: NOP

NOP
NOP
NOP
NOP
NOP
DEC R19
BRNE AGAIN3
DEC R18
BRNE AGAIN2
DEC R17
BRNE AGAIN1
RET

Figure 15.1

https://mail.gptcthirurangadi.in

