

TED (15) - 4133

(REVISION - 2015)

https://mail.gptcthirurangadi.in

Reg. No.

Signature

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — OCTOBER, 2017

DATA STRUCTURES

[Time: 3 hours

(Maximum marks: 100)

PART — A (Maximum marks : 10)

Marks

 $(5 \times 2 = 10)$

- I Answer all questions in one or two sentences. Each question carries 2 marks.
 - 1. List the names of the two types of complexities by which the performance of an algorithm is measured.
 - 2. Define a linked list.

Figure -1

- 3. What is a circular linked list ?
- 4. Draw an example of a full binary tree.
- 5. What is a weighted graph?

PART — B

(Maximum marks : 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. Write the postfix equivalent of the following infix expressions : (a) A - B/C + (D-E) (b) (A + B) - C/D/E
 - 2. Compare linear and non-linear data structures.
 - 3. What is a List ADT ? Describe any two methods of a List ADT.
 - 4. Construct a BST by inserting the values 13, 3, 4, 12, 14, 10 and 18 in that order starting with the value 13 at the root of the BST.
 - 5. Write a note on adjacency matrix representation of a graph. Write the adjacency matrix of the graph shown in Figure 1

Marks

- 6. Explain the linked representation of a binary tree.
- 7. Write a note on :(a) Binary search
 - (b) Bubble sort

$(5 \times 6 = 30)$

PART — C

(Maximum marks : 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

Unit — I

- III (a) Explain the evaluation of a postfix expression using stack. 7
 - (b) Write the algorithms for insertion and deletion of an element of a circular queue. 8

OR

IV	(a)	Write a note on :	
	•	(i) Big O notation(ii) Dequeue(iii) Prefix expression(iv) ADT	12
	(b)	What is meant by traversal of a data structure ?	3
		Unit — II	
V	(a)	Explain the implementation of stack using Linked List.	9
	(b)	Write the algorithm for 'printList()' operation of List ADT using array.	6
		Or	
VI	(a)	Write the algorithms for removing the head node and tail node of a linked list.	8
	(b)	Write the algorithm for the 'Insert' operation of a linked list.	7
		Unit — III	
VII	(a)	Write algorithm for preorder and postorder traversal of a BST.	8
	(b)	Describe threaded binary tree showing an example.	7
		Or	
VIII	(a)	Describe the 'find' operation of a BST.	7
	(b)	Describe the 'insertion' operation of a BST.	8
		UNIT — IV	
IX	(a)	Write the algorithm for breadth-first-search (BFS) of a graph. Write the order in which nodes are visited by applying DFS on the graph shown in Figure -1	
		starting with node 0.	9
	(b)	Write a note on Linear search.	6
		Or	
Х	(a)	Write a note on Warshall's algorithm.	6
	(b)	Write the algorithm for depth-first-search (DFS) of a graph. Write the order in which nodes are visited by applying DFS on the graph shown in Figure -1 starting with node 0.	9