https://mail.gptcthirurangadi.in

TED (15) -1003

(REVISION - 2015)

Ι

Reg. No.....

Signature

FIRST SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/ TECHNOLOGY — OCTOBER/NOVEMBER, 2016

ENGINEERING PHYSICS - I

[Time: 3 hours

(Maximum marks : 100)

PART — A

(Maximum marks : 10)

Marks

Answer all questions in one or two sentences. Each question carries 2 marks.

1. Distinguish between Giga and nano.

- 2. What do you mean by period in simple harmonic motion ?
- 3. What is the direction of acceleration of a body when it is thrown vertically upwards and is momentarily at rest at the highest position ?
- 4. What is elastic limit?

5. State the triangle method of vector addition.

$(5 \times 2 = 10)$

PART — B

(Maximum marks : 30)

II Answer any five questions from the following. Each question carries 6 marks.

- 1. Write the 3 equations of motion for a body :
 - (i) moving upwards under gravity
 - (ii) moving downwards under gravity.
- 2. For a body thrown vertically upwards, prove that time of ascent is same as time of descent.
- 3. State Newton's first law of motion. Explain its significance.
- 4. Define parallel forces. What are like and unlike parallel forces? A force of 30N makes an angle 30° with horizontal. Find its horizontal and vertical components.
- 5. Explain the different types of energies associated with fluid flow. Write their equations also. Hence, state Bernoulli's theorem and give the equation.
- 6. Distinguish between free vibrations and forced vibrations. Hence, define resonance.
- 7. A steel rod of length 4m and 1mm radius is stretched by a 15kg mass. Find the extension produced. Young's modulus of steel is 2×10^{11} N/m².

 $(5 \times 6 = 30)$

https://mail.gptcthirurangadi.in

PART - C

(Maximum marks : 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

Unit — I

- III (a) Define displacement, velocity and acceleration.
 - (b) Derive the equation for displacement of a body during the nth second of its motion. A body having initial velocity 10m/s is moving with an acceleration of 2m/s². Find the displacement of the body (i) in the 5th second of motion, (ii) in 5 seconds.
 - (c) A bullet loses $\frac{1 \text{ th}}{10}$ of its velocity when it passes through a wooden block. How many such blocks are required to stop the bullet?

OR

- IV (a) Define Inertia. When a moving bus is stopped suddenly, passengers are thrown forward. Why ?
 - (b) Prove the law of conservation of momentum by considering the collision of two bodies moving in a straight line.
 - (c) Explain rocket propulsion. When a gun of 5kg fires a bullet of 200g with a velocity 100m/s, find the recoil velocity of the gun.

Unit — II

- (a) Derive the expression for the magnitude and direction of resultant of two forces using parallelogram law of forces.
 - (b) Two forces 10N and 20N are acting at an angle 60° with the horizontal. Find the magnitude and direction of the resultant force.
 - (c) What are the concurrent forces ? What is the name of the force that brings the body under a set of forces to equilibrium ?

Or

- VI (a) Explain the resolution of a vector into rectangular components.
 - (b) Two objects are suspended on either ends of a beam 1m long. If a 60kg mass at one end is balanced by a pivot at 0.4m from the same end, find the mass of the other object.
 - (c) Define couple. What is moment of a couple ? Derive an expression for work done by a couple.

Marks

3

6

6

3

6

6

6

6

3

3

6

6

Marks

6

6 3

UNIT - III

VII

VIII

IX

(a)	Write the equation of continuity for steady and uniform flow of an incompressible fluid with a diagram and explain the terms. The radius of a hose decreases from 2.5cm to 1.5cm. The flow rate of the hose is 10m ³ /s. If water flows through the hose, find its velocities at the two ends.	6
(b)	What do you mean by strain ? What are the three types of strain? Write the three corresponding modulii of elasticity.	6
(c)	Discuss the working principle of airfoil with a figure. Or	3
(a)	Write the equation for viscous force listing the terms. Describe a method for finding the velocity of liquid using Stoke's method.	6
(b)	Discuss the variation of viscosity with temperature.	3
(c)	Calculate the terminal velocity of a water drop of radius 0.1mm falling through air of viscocity $1.8 \times 10^{-5} \text{ kgm}^{-1}\text{s}^{-1}$, if the viscous force on the drop is 5×10^{-11} N.	6
	Unit — IV	
(a)	Define simple harmonic motion. Write its differential equation.	3
(b)	Derive a relation connecting the wavelength, frequency and velocity of a wave. Calculat the frequency of blue light of wavelength 430 nanometers. Velocity of light is 3×10^8 m/s.	6
(c)	What are ultrasonic waves? Describe a method to produce ultrasonic waves.	6
	UR	

- (a) Discuss the resonance column experiment to determine the velocity of sound Х in air.
 - (b) You are given the velocity of sound in air at $t^{\circ}C(v_{*})$. Write an equation to find the velocity of sound at $0^{\circ}C(v_0)$. Hence, find the velocity of sound at $0^{\circ}C$, given that velocity of sound at $60^{\circ}C$ is 365 m/s.
 - (c) Distinguish between nodes and antinodes in wave motion.

https://mail.gptcthirurangadi.in