https://mail.gptcthirurangadi.in

TED (10) - 1015 (REVISION - 2010)

Reg. No.	15 - 4
Signature	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — OCTOBER, 2017

TECHNICAL MATHEMATICS - II

[Time : 3 hours

(Maximum marks : 100)

PART — A

(Maximum marks : 10)

Marks

I Answer all questions. Each question carries 2 marks.

- 1. Evaluate $\lim_{x \to 0} \frac{3x-5}{2x+4}$
- 2. Find $\frac{dy}{dx}$ if $y = x^2 \sin x$
- 3. If $s = t^2 4t + 3$, find the velocity at t = 4 seconds.
- 4. Find $\int \tan^2 x \, dx$
- 5. Solve $\frac{dy}{dx} + 3y = 0$.

 $(5 \times 2 = 10)$

PART — B

(Maximum marks : 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. If $x^2 y^2 = x^3 + y^3 + 3xy$, Find $\frac{dy}{dx}$
 - 2. If $y = x \cos x$, Prove that $y^{11} + y + 2 \sin x = 0$
 - 3. Find the equation of the tangent and normal to the curve $y = x^2 + x 1$ at (2, 7).
 - 4. Find $\int x^2 \sin x \, dx$.
 - 5. Evaluate $\int_0^2 x^3 \log x \, dx$
 - 6. Find the area bounded by one arch of the curve $y = \sin 3x$ and the X—axis.
 - 7. Solve x $\frac{dy}{dx} + 3y = 5x^2$.

 $(5 \times 6 = 30)$

Marks

PART - C

(Maximum marks : 60)

(Answer one full question from each unit. Each full question carries 15 marks)

III	(a)	Differentiate cosx by the method of first principle.	5
ta d	(b)	If $x = a \sec \theta$, $y = b \tan \theta$, find $\frac{dy}{dx}$.	5
	(c)	If $y = ae^{x} + be^{2x}$, Prove that $y^{11} - 3y^{1} + 2y = 0$.	5
		Or	
IV	(a)	Evaluate $\lim_{x \to 3} \frac{x^3 - 27}{x^4 - 81}$.	5
	(b)	If $y = A \cos px + B \sin px$, show that $\frac{d^2y}{dx^2}$ is proportional to y.	5
	(c)	If $y = e^{4x} \log (\sin x)$, find $\frac{dy}{dx}$.	5
		Unit — II	
v	(a)	For what values of x is the tangent to the curve $\frac{x}{x^2+1}$ parallel to the X—axis.	5
	(b)	The displacement of a body is given by $x = 4 \cos 3t + 5 \sin 3t$. Show that	
		the acceleration of the body is always proportional to the displacement.	5
	(c)	Find the maximum and minimum values of $2x^3 - 3x^2 - 36x + 10$.	5
		Or	
VI	(a)	The deflection of a beam is given by $y = 4x^3 + 9x^2 - 12x + 2$. Find the maximum deflection.	5
	(b)	A balloon is spherical in shape. Gas is escaping from it at the rate of 10 cc/sec. How fast is the surface area shrinking when the radius is	
		15 cm ?	5
	(c)	Find the range of values of x for which $x^2 + 3x - 4$ is	
		(i) increasing (ii) decreasing	5
		Unit — III	
VII	(a)	Find $\int (\tan x + \cot x)^2 dx$.	5
	(b)	Evaluate $\int_0^{\pi} \cos^2 2x dx$.	5
	(c)	Find (i) $\int \frac{3x-1}{x^4} dx$ (ii) $\int (3x+4) (2x-1) dx$. 3	+ 2= 5

OR

5

3

- VIII (a) Find (i) $\int \frac{\sec^2 x}{\sqrt{1-\tan^2 x}} dx$, (ii) $\int \frac{2x}{x^2+1} dx$. Marks 3 + 2 = 5
 - (b) Evaluate $\int_{0}^{\pi/4} \frac{\sec^2 x}{(1+\tan x)} dx.$

(c) Find (i)
$$\int \frac{x^2}{(8+x^3)^4} dx$$
 (ii) $\int \frac{e^{2x}}{1+e^{2x}} dx$. $3+2=5$

IX	(a)	Find the area enclosed between the curve $y = x^2 - x - 2$ and the X—axis.	5
	(b)	Find the volume generated when the portion of the parabola $y^2 = 4x$ between $x = 0$ and $x = 4$ revolves about the X—axis.	5
	(c)	Solve $\frac{dy}{dx} = e^{x+y} + x^2 e^{y}$.	5
X	(a)	Find the area enclosed between the curves $y = x^2$ and $2x + y - 3 = 0$.	5
	(b)	Find the volume of the solid obtained by rotating one arch of the curve $y = sinx$ about the X—axis.	5
	(c)	Solve x $(1 + y^2) dx + y (1 + x^2) dy = 0.$	5

https://mail.gptcthirurangadi.in