

TED (15) - 2002(REVISION — 2015)

Reg. No.	
Signature	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — APRIL, 2019

ENGINEERING MATHEMATICS-II

[Time: 3 hours

(Maximum marks: 100)

PART — A

(Maximum marks: 10)

Marks

- 1 Answer all questions. Each question carries 2 marks.
 - 1. Find the unit vector in the direction of $2\hat{i} 3\hat{j} + \hat{k}$.
 - 2. Evaluate $\begin{vmatrix} \sec \theta & \tan \theta \\ \tan \theta & \sec \theta \end{vmatrix}$
 - 3. If $A = [0 \ 2 \ 3]$ $B = [1 \ 4 \ -1]$. find A^TB .
 - 4. Integrate $\sec^2 x = \frac{1}{x}$ with respect to x.
 - 5. Find the order and degree of the differential equation

$$\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = e^x$$
 (5 × 2 = 10)

PART — B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. Find the dot product and angle between the vectors $6\hat{i} 3\hat{j} + 2\hat{k}$ and $2\hat{i} + 2\hat{j} \hat{k}$.
 - 2. Find the middle terms in the expansion of $(x + 2y)^7$
 - 3. Solve by Cramer's rule, Given

$$2x-3y+z=-1$$
, $x+4y-2z=3$, $4x-y+3z=11$

- 4. If $A = \begin{bmatrix} 1 & 2 \\ 4 & 9 \end{bmatrix}$ verify that $AA^{-1} = A^{-1}A = I$.
- 5. Evaluate $\int_0^{\pi/2} \cos 4x \cos x \, dx$.
- 6. Obtain the volume of a sphere of radius 'r' using integration.

7. Solve
$$\frac{dy}{dx} + y \cot x = 2 \cos x$$
. (5 × 6 = 30)

Marks

PART — C

(Maximum marks : 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

Unit — I

III (a) If $\overrightarrow{a} = 5\hat{i} - \hat{j} - 3\hat{k}$, $\overrightarrow{b} = \hat{i} + 3\hat{j} - 5\hat{k}$. Show that the vectors $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} - \overrightarrow{b}$ are perpendicular to each other.

5

(b) Expand $\left(x^3 - \frac{1}{x^2}\right)^5$ binomially.

5

(c) Find the moment about the point A(4, 0, -3) of a force represented by $3\hat{i} + 2\hat{j} + 6\hat{k}$ acting through the point B(2, -1, 5).

5

OR

IV (a) The constant forces $2\hat{i} - 5\hat{j} + 6\hat{k}$, $-\hat{i} + 2\hat{j} - \hat{k}$ and $2\hat{i} + 7\hat{j}$ act on a particle from the position $4\hat{i} - 3\hat{j} - 2\hat{k}$ to $6\hat{i} + \hat{j} - 3\hat{k}$. Find the total work done.

5

(b) Find the coefficient of x^{18} in the expansion of $\left(x^4 - \frac{1}{x^3}\right)^{15}$

5

(c) Find the area of parallelogram whose adjacent sides are represented by the vectors $\overrightarrow{a} = \hat{i} - \hat{j} + 3\hat{k}$ and $\overrightarrow{b} = 2\hat{i} - 7\hat{j} + \hat{k}$.

5

Unit - II

V (a) If $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ show that $A^2 - 4A - 5$ I = 0.

5

(b) Solve x if $\begin{bmatrix} 2 & 1 & x \\ 3 & -1 & 2 \\ 1 & 1 & 6 \end{bmatrix} = \begin{bmatrix} 4 & x \\ 3 & 2 \end{bmatrix}$

5

(c) If $A = \begin{bmatrix} 1 & 2 & 3 \\ -4 & 5 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ -1 & 1 \end{bmatrix}$ compute AB and BA.

5

OR

VI (a) Find inverse of $\begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$

5

(b) If $A = \begin{bmatrix} 1 & 0 & 5 \\ -2 & 1 & 6 \\ 3 & 2 & 7 \end{bmatrix}$ compute $A + A^T$ and $A - A^T$. Hence show that one is

symmetric and the other is skew-symmetric.

5

(c) Solve $\frac{6}{x} + \frac{7}{y} = 5$, $\frac{2}{x} + \frac{5}{y} = 3$ by determinant method.

5

https://mail.gptcthirurangadi.in

3

		I Jaure III	Marks		
Unit — III					
VII	(a)	Find $\int \frac{\sec^2 x}{1+\tan x} dx$.	5		
	(b)	Find $\int x^2 e^{2x} dx$.	5		
	(c)	Evaluate $\int_0^{\pi} \cos^2 2x dx$.	5		
OR					
VIII		Find $\int \sqrt{1 + \sin 2x} dx$.	5		
	(b)	Evaluate $\int_{0}^{\frac{\pi}{2}} x \sin x dx$.	5		
	(c)	Evaluate $\int_0^1 \frac{2x+1}{x^2+x+1} dx$.	5		
Unit — IV					
IX	(a)	Find the area enclosed between $y = x^2$ and the straight line $y = x + 2$.	5		
	(b)	Find the volume of the solid generated by the rotation of the area bounded			
		by the curve $y = 2 \cos x$, the x-axis and the lines $x = 0$ and $x = \frac{\pi}{4}$ about			
		x axis.	5		
	(c)	Solve $\frac{dy}{dx} = e^{3x+y}$	5		
	O_R				
X	(a)	Find the area bounded by the curve $y = x^2 - 5x + 6$ and the x axis.	5		
	(b)	Solve $\frac{d^2y}{dx^2} = \csc^2 x$.	5		
	(c)	Solve $(x^2 + 1) \frac{dy}{dx} + 2xy = 4x^2$.	5		