

TED (15) - 4133

Æ	E١	ЛS	ION	20	15).
٠.,					,

Reg. No.	
Sionature	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — APRIL, 2019

DATA STRUCTURES

[Time: 3 hours

(Maximum marks: 100)

PART — A

(Maximum marks: 10)

Marks

- I Answer all questions in one or two sentences. Each question carries 2 marks.
 - 1. Define ADT.
 - 2. Convert the expression (A + B) * C / (D E) in to prefix form.
 - 3. Write memory management operation for nodes in C++.
 - 4. What is a full binary tree?
 - 5. Define directed graph.

 $(5 \times 2 = 10)$

PART — B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. Explain complexity of algorithms and Big Oh(O) notation.
 - 2. How do you insert and delete elements in a queue ?
 - 3. Describe list using array.
 - 4. What do you mean by traversal of a binary tree? Write the algorithm for post order traverse of a binary tree.
 - 5. Explain with example Expression trees.
 - 6. Write the algorithm for DFS of a graph with example.
 - 7. Write the algorithm for binary search on a list of sorted elements.

 $(5 \times 6 = 30)$

	# -	rl	
13.	/ 2	rv	С

PART - C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

	Unit — I	
III	(a) Explain about Array as an ADT.	8
	(b) Explain Template and Classes in C++	7
	Or	
IV	(a) Explain prefix, infix and postfix Expressions.	6
	(b) Explain the procedure/algorithm for infix to postfix conversion using stack.	9
	Unit — II	
V	Explain linked list ADT with makeEmpty(), printList(), find(), findkth(), insert(). delete() OR	15
VI	(a) Explain the implementation of Stack with linked list.	9
	(b) Write short note on circular and doubly linked list.	6
	Unit — III	
VII	Explain implementation of binary trees with example.	15
	$O_{\mathbb{R}}$	
/ [[]	Explain with example binary search tree ADT and its traverse.	15
	Unit — IV	
lΧ	(a) Explain with example adjacency matrix representation of graph.	8
	(b) Write the algorithm for all-pairs shortest path.	7
	OR	
X	Explain Quick sort algorithm with example.	15
		-