

4	REV	ЛΩ	ΩN	 201	5
١	(\mathbf{L})	α	O! Y	 2U I	υ,

Reg.	No
Siona	ture

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — APRIL, 2019

\bigcup

EMBEDDED SYSTEMS

[Time: 3 hours

(Maximum marks: 100)

PART --- A

(Maximum marks: 10)

Marks

- I Answer all questions in one or two sentences. Each question carries 2 marks.
 - 1. List any 2 members of ATmega family.
 - 2. List any two assembler directives.
 - 3. Specify is the size in bits of 'unsigned char' type data.
 - 4. Define an embedded system.
 - 5. Give the function of SWAP instruction.

 $(5 \times 2 = 10)$

PART — B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. List the features of AVR microcontroller.
 - 2. Explain different data formats used in AVR with example.
 - 3. Draw and explain the connection of RS232 to ATmega32.
 - 4. Explain different types of embedded OS.
 - 5. Compare Subroutines with Macros.
 - 6. List some applications of embedded systems.
 - 7. Explain different data types in AVR C-programming.

 $(5 \times 6 = 30)$

[132]

[P.T.O.

Marks

PART — C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

		Unit — I		
Ш	Drav	w and explain architecture of ATmega32.	15	
		OR		
ΙV	(a)	Draw the bit pattern and explain each bit of Status Register.	8	
	(b)	Explain data memory of ATmega32.	7	
		Unit — II		
V	(a)	(a) Write an Assembly Language Program to add 45A7H and 3C9AH and store the result in SRAM location 0x 60 and 0x 61.		
	(b)	Explain the need for initializing stack with a simple example.	5	
	(c)	Differentiate between LDI and LDS instructions with example.	4	
		Or		
VI	(a)	a) Write an assembly language program to convert the BCD number 89H into ASCII and store the result in R20 and R21.		
	(b)	Explain any four arithmetic instructions with example.	8	
		Unit — III		
VII	(a)	Explain Timer 0 operation with a diagram.	9	
	(b)	Write an AVR C - program to toggle all pins of Port B with some delay.	6	
		Or		
VIII	(a)	Explain different steps in executing an interrupt in ATmega32.	6	
	(b)	Explain the logical operators used in AVR C with examples.	9	
		Unit — IV		
ΙX	(a)	Explain specialities of Embedded systems.	7	
	(b)	Write short notes on: (i) Task Scheduling (ii) Mutual exclusion.	8	
		Or		
X	(a)	Explain different activities of an Embedded OS.	9	
	(b)	State role of Kernel in Embedded OS.	6	