

TED (15) - 2004

(REVISION - 2015)

Reg.	No	
O'		

SECOND SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/ TECHNOLOGY — MARCH, 2016

ENGINEERING CHEMISTRY - II

(Common to all branches except DCP and CABM)

[Time: 3 hours

(Maximum marks: 100)

PART - A

(Maximum marks: 10)

Marks

- Answer the following questions in one or two sentences. Each question carries 2 marks.
 - 1. H₂O is a liquid while H₂S is a gas. Give reason.
 - 2. Give two examples each for electrolytes and non-electrolytes.
 - 3. What is activity series?
 - 4. What are refractories? Mention two uses.
 - 5. Name the different regions of the atmosphere?

 $(5 \times 2 = 10)$

PART -B

(Maximum marks: 30)

- (Answer any five of the following questions. Each question carries 6 marks.)
- (a) State any four postulates of Bohr's atom model.

4 2

- (b) Give the significance of principle quantum number.
- (a) Draw a labelled figure for electroplating of nickel over steel spoon and give the electrode reactions.

4 (b) Arrange the following metals in the decreasing order of their reactivity.

Al, Cu, Fe, Mg, Zn and K.

2

- 3. (a) What are saturated and unsaturated organic compounds? Give an example for each and give one test to identify them.
- 4

(b) What is the role of sulphur in vulcanization of rubber?

- 2
- (a) Ordinary rain water is slightly acidic. When does it become acid rain and what are its threats?
- 4

(b) How will you convert higher hydrocarbons into petrol.

		Mai	rks
5	(a)	What is the maximum number of electrons that can be accommodated in an orbital? Name and state the rule which governs this.	4
	(b)	The azimuthal quantum number of an orbital is 1. Name the orbital and what is its shape ?	2
6	(a)	How is underground iron pipes protected from corrosion? Name the method and give the principle behind it?	4
	(b)	List any two applications of fuel cell.	2
7	(a)	Mention the monomers and any one use of the following polymers.	
		(i) Nylon 6 (ii) Buna-N	4
	(b)	Name the raw materials used in the manufacture of ordinary glass and give one application.	2
		PART—C	
		(Maximum marks : 60)	
	(A	nswer one full question from each unit. Each full question carries 15 marks.)	
		Unit—I	
Ш		Illustrate the formation of ionic bond and covalent bond with an example.	6
	(b)	Write all quantum numbers of the electron present in outermost shell of potassium.	
		(At. No. = 19)	5
	(c)	State Heisenberg's uncertainty principle. Give its mathematical expression and explain the terms.	4
		OR	
IV	(a)	State Hund's rule of maximum multiplicity. Illustrate it taking nitrogen and neon	
1 4	(4)	as examples.	6
	(b)	What do you mean by dual nature of matter? An electron is associated with a wavelength of 10nm. Calculate the velocity of the electron. ($h = 6.63 \times 10^{-34} \text{ JS}$,	5
		Mass of electron = $9.1 \times 10^{-31} \text{ kg}$	4
	(c)	Bring out the differences between an orbit and an orbital. UNIT—II	·
V	(2)	What is electrolysis and state Faraday's laws of electrolysis.	6
•		What is rust and give its chemical formula? Write the conditions for rusting.	5
		How will you represent Daniel cell? Write the electrode reactions and net cell	
	(c)	reaction.	4

Marks

VI	(a)	A cell is constructed using Zn and Ag electrodes. Write	
		(i) the electrode reactions	
		(ii) the net cell reaction	
		(iii) cell representation	
		(iv) compute the e.m.f. of the cell, given $E^0Zn^{2+}/Zn = -0.76$ and $E^0Ag^+/Ag = 0.80V$.	6
	(b)	Give one example each for metallic and electrolytic conductors. What are the major differences between the two?	5
	(c)	Write the principle behind barrier protection and suggest any two methods for it.	4
		Unit—III	
VII	(a)	How are plastics classified based on their method of molding and applications and differentiate between them with one examples each.	6
	(b)	Classify the following polymers into addition and condensation polymers.	
		(i) Teflon (iv) Neoprene	
		(ii) Bakelite (v) Nylon 6,6	
		(iii) Buna-S	5
	(c)	Compare organic and inorganic compounds.	4
		OR	
VIII	(a)	How are polymers classified based on their structure? Give one example for each.	6
		What are functional groups? Give the functional groups present in aldehydes, aminess and esters?	5
	(c)	Write any four advantages of optical fibres.	4
			7
		Unit—IV	
IX	(a)	What are fules? How are they classified based upon their physical state. Give two examples for each category.	6
	(b)	What is greenhouse effect and give any three consequences.	5
	(c)	Comment on the relevance of green chemistry in the present scenario.	4
		OR	
X	(a)	What is smog? Explain different types of smog.	-
		Write the composition and preparation of water gas and producer gas.	6
	(c)	What is soil pollution? Give any three remedial measures.	5
		direct cinedia measures.	4

