https://mail.gptcthirurangadi.in

TED (15) - 1003

(REVISION - 2015)

Reg. No.....

Signature

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — OCTOBER, 2017

ENGINEERING PHYSICS – I

[*Time* : 3 hours

(Maximum marks : 100)

PART — A

(Maximum marks: 10)

Marks

 $(5 \times 2 = 10)$

I Answer all questions in one or two sentences. Each question carries 2 marks.

- 1. What are the advantages of SI system over other unit systems ?
- 2. Show that power is the product of force and velocity.
- 3. State Lami's theorem for concurrent forces.
- 4. Distinguish between ductile and brittle solids.
- 5. Write any two characteristics of stationary waves.

PART — B

(Maximum marks : 30)

II Answer any *five* of the following questions. Each question carries 6 marks.

- State Newton's second law of motion. From the law obtain an expression for force.
- 2. Derive the formula for the work done by a couple.
- 3. Obtain an expression for coefficient of viscosity from Stoke's formula.
- 4. Show that an open pipe produce all harmonics. Illustrate your answer with diagrams.
- 5. Write the equation of continuity for steady flow of an incompressible fluid. The radius of a pipe decreases from 3cm to 2cm. If the velocity of water in the wider portion is 2m/s, calculate the velocity in the narrow path.
- 6. At the marks 30cm, 45cm and 86cm of a meter scale of mass 0.5kg, weights 1 kg, 2kg and 3kg respectively are suspended. Where the scale should be suspended, so that it remains horizontal ?
- 7. Velocity of sound in air at 30°C is 348m/s. Find the velocity at 60°C. $(5\times 6=30)$

Marks

3

6

6

3

6

6

6

ľ

V

PART — C

(Maximum marks : 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

Unit — I

- III (a) State Newton's first law of motion. When a moving bus is stopped suddenly, passengers are thrown forward. Why ?
 - (b) Deduce the law of conservation of linear momentum using Newton's third law of motion.
 - (c) Explain the principle of rocket propulsion. A shot of mass 200kg is fired horizontally from a gun of mass 80000kg with velocity 400m/s. Find the recoil velocity.

Or

- IV (a) Write the three equations of motion for a body uniformly accelerated in a straight line.
 - (b) Derive the equation for the distance travelled by a particle during the nth second of its motion, when the body is moving with uniform acceleration.
 - (c) A stone thrown vertically upwards was in air for 9 seconds. Find the velocity of propagation and the maximum height reached.

Unit — II

V	(a)	Find out the magnitude and direction of the resultant of two forces P and Q acting at an angle θ .	6
	(b)	A force 4N acts along the X - direction. Another force 6N makes an angle 60° with the first force. Find the magnitude and direction of the resultant.	6
	(c)	Define the terms resultant and equilibrant.	3
		Or	
/Ι	(a)	Write the law of triangle of forces.	3
	(b)	Define parallel forces. Describe the conditions for translational and rotational equilibrium of a body under coplanar parallel forces.	6
	(c)	Find the couple acting on the shaft of an electric motor when developing a power 6280W at a speed 300 revolutions per minute.	6
		Unit — III	
II	(a)	Define stress and strain. State Hookes law for an elastic material.	3
	(b)	State Bernoulli's theorem. Explain the working of an atomiser.	6
	3.8		

- (c) Find the elongation of a steel rod of length 4m and radius 2cm when subjected to an axial load of 5000kg. Y of steel is 20×10^{10} N/m².
 - OR

Ĭ

Marks

/III	(a)	Explain the term viscosity. Describe the Poiseuille's method to determine the coefficient of viscosity of water.	6
	(b)	Discuss the variation of viscosity with temperature for gases and liquids.	3
	(c)	64 identical droplets of water come down through air with constant terminal velocity 1cm/s. Find the terminal velocity when they combine to form a single drop.	6
		Unit — IV	
IX	(a)	Derive an equation for the velocity of a wave in terms of frequency and wave length.	3
	(b)	Find out the fundamental frequency of the air column contained in a tube closed at one end and having a length 40cm. Velocity of sound in air is 340m/s. End correction can be ignored.	6
	(c)	What are ultrasonic waves? Give its two applications. Describe a method to produce ultrasonic waves.	6
		Or	
Х	(a)	Show that the projection of a uniform circular motion along a diameter of a circle is simple harmonic.	6
	(b)	What is end correction ? Give the equation for end correction.	3
	(c)	Calculate the wavelength of sound in air corresponding to the limits of audibility. The audible range is 20Hz to 20000Hz. Velocity of sound is 330m/s.	6