

TED (15) - 1003

(REVISION - 2015)

| Reg. No.  |  |
|-----------|--|
| Signature |  |

## DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — OCTOBER, 2018

## **ENGINEERING PHYSICS - 1**

[Time: 3 hours

(Maximum marks: 100)

PART - A

(Maximum marks: 10)

Marks

- I Answer all questions in one or two sentences. Each question carries 2 marks.
  - 1. Write the SI units of electric current and temperature.
  - 2. What are collinear vectors?
  - Define triangle law of vector addition.
  - 4. State Hooke's law for elastic materials.
  - Give two applications of ultrasonic waves.

 $(5 \times 2 = 10)$ 

## PART — B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
  - 1. State and prove the law of conservation of linear momentum in the case of elastic collision in one dimension.
  - 2. What are the rectangular components of a vector reacting at an angle  $\theta$  with the X axis? If one of the rectangular components of a force 40 N is 20 N, find the other component.
  - 3. A mass 5 kg is initially at rest. A force 20 N is applied on it. What is the kinetic energy at the end of 10 s?
  - 4. Two iron wires of the same radius have lengths in the ratio 1:3. They are subjected to forces in the ratio 2:1. Find the ratio of their elongations.
  - State Bernoulli's principle. Explain the lift of an air craft using Bernoulli's principle.
  - 6. Explain various modes of vibration in an open pipe.
  - Show that the projection of a uniform circular motion along a diameter is simple harmonic.

 $(5 \times 6 = 30)$ 



|     |            |                                                                                                                                                                                                | TABILL OF  |
|-----|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|     |            | PART — C                                                                                                                                                                                       |            |
|     |            | (Maximum marks : 60)                                                                                                                                                                           |            |
|     |            | (Answer one full question from each unit. Each full question carries 15 marks.)                                                                                                                |            |
|     |            | Unit — I                                                                                                                                                                                       |            |
| Ш   | (a)        | Give the dimensions of velocity and acceleration. A ball is thrown vertically up. What is the velocity and acceleration at the top?                                                            | 3          |
|     | (b)        | Obtain an expression for the distance travelled by a particle during the n <sup>th</sup> second of its motion.                                                                                 | 6          |
|     | (c)        | A body is thrown vertically up from the top of a cliff with a velocity 98 m/s. It reaches the bottom of the cliff after 22 s. Find the height of the cliff.                                    | 6          |
|     |            | OR                                                                                                                                                                                             |            |
| IV  | (a)        | Show that impulse is equal to change in momentum.                                                                                                                                              | 3          |
|     | (b)        | State Newton's second law of motion. From the law obtain an expression for force.                                                                                                              | 6          |
|     | (c)        | A boy weighing 40 kg jumps upto a height 0.7m. Find his power if he can jump 20 times a minute.                                                                                                | 6          |
|     |            | Unit — II                                                                                                                                                                                      |            |
| v   | (a)        | Define moment of a force. What is its unit?                                                                                                                                                    | 3          |
|     | , ,        | Obtain an expression for the work done by a rotating couple.                                                                                                                                   | 6          |
|     |            | A couple 100 Nm acts on the shaft of a motor and rotates it at a speed 7 rev/s. Calculate the power developed.                                                                                 | 6          |
|     |            | OR                                                                                                                                                                                             |            |
| VI  | (a)        | State and explain Lami's theorem.                                                                                                                                                              | 3          |
|     |            | What are coplanar forces? Describe the condition for translational and rotational equilibrium of a body under coplanar parallel forces.                                                        | 6          |
|     | (c)        | At the marks 30 cm, 45 cm and 86 cm of a meter scale of mass 0.5 kg, weights 1 kg, 2 kg and 3kg respectively are suspended. Where the scale should be suspended so that it remains horizontal? | 6          |
|     |            | Unit — III                                                                                                                                                                                     |            |
| VII | (a)        | What are the energies associated with a streamline flow?                                                                                                                                       | 3          |
|     | <b>(b)</b> | Define the term viscosity. On what factors does the viscous force acting tangentially on a layer depend? Discuss the variation of viscosity of liquids with temperature.                       | 6          |
|     | (c)        | Calculate the viscous force on a water drop of radius 0.1mm falling through air of coefficient of viscosity $1.8 \times 10^{-5}$ kg/m/s with constant velocity 0.15 m/s.                       | $\epsilon$ |



|     |                                                                                                                                                                                                                                                         | Ividiks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a) | Define stress and strain. Give their units.                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (b) | What is terminal velocity? Using Stoke's formula, obtain an expression for the terminal velocity of a sphere falling through a viscous liquid.                                                                                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (c) | Calculate the pressure required to maintain the flow of a liquid at the rate of 10 litre/s through a horizontal tube 10cm in diameter and 1km in length. Coefficient of viscosity of liquid = $0.001 \text{ SI}$ unit. (1 litre = $10^{-3}\text{m}^3$ ) | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | Unit — IV                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (a) | What is simple harmonic motion? Give two examples of simple harmonic motion.                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (b) | Discuss the resonance column experiment to determine the velocity of sound in air.                                                                                                                                                                      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (c) | Velocity of sound in air at 0°C is 330 m/s. Find the increase in velocity when the temperature is 1°C.                                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | OR                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (a) | Describe briefly a method for the production of ultrasonic waves.                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (b) | Distinguish between free vibration and forced vibration. What is resonance? When does it happen?                                                                                                                                                        | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (c) | The shortest length of an air column contained in a pipe closed at one end and resonating with a tuning fork 384 Hz is 22.1 cm. Calculate the velocity                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | (b) (c) (a) (b) (c) (a) (b)                                                                                                                                                                                                                             | <ul> <li>(b) What is terminal velocity? Using Stoke's formula, obtain an expression for the terminal velocity of a sphere falling through a viscous liquid.</li> <li>(c) Calculate the pressure required to maintain the flow of a liquid at the rate of 10 litre/s through a horizontal tube 10cm in diameter and 1km in length. Coefficient of viscosity of liquid = 0.001 S1 unit. (1 litre = 10<sup>-3</sup>m<sup>3</sup>)  UNIT — IV </li> <li>(a) What is simple harmonic motion? Give two examples of simple harmonic motion.</li> <li>(b) Discuss the resonance column experiment to determine the velocity of sound in air.</li> <li>(c) Velocity of sound in air at 0°C is 330 m/s. Find the increase in velocity when the temperature is 1°C.  OR </li> <li>(a) Describe briefly a method for the production of ultrasonic waves.</li> <li>(b) Distinguish between free vibration and forced vibration. What is resonance? When does it happen?</li> <li>(c) The shortest length of an air column contained in a pipe closed at one end</li> </ul> |