

TED (15) - 1002

(REVISION - 2015)

Reg. No.	
Signature	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — OCTOBER, 2018

ENGINEERING MATHEMATICS - I

[Time: 3 hours

(Maximum marks: 100)

PART — A

(Maximum marks: 10)

Marks

- I Answer all questions. Each question carries 2 marks.
 - I. Find the value of $tan^260 + tan^2 45$.
 - 2. If $\tan \theta = 3$, find $\sin 2\theta$.
 - 3. Find the area of a triangle given, b = 3cm, c = 2cm and $A = 30^{\circ}$.
 - 4. Evaluate $\lim_{x \to 3} \frac{x^2 + 9}{x + 3}$
 - 5. For what values of x, the function $x^2 5x + 6$ is increasing?

 $(5 \times 2 = 10)$

PART — B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. Find the value of $\tan 75$, without using tables and show that $\tan 75 + \cot 75 = 4$.
 - The horizontal distance between two towers is 60 m and the angle of depression of the first tower as seen from the second which is in 150 m height is 30°. Find the height of the first tower.
 - 3. Prove that $\cos \frac{\pi}{8} + \cos \frac{3\pi}{8} + \cos \frac{5\pi}{8} + \cos \frac{7\pi}{8} = 0$
 - 4. Solve $\triangle ABC$, given a = 4cm, b = 5cm, c = 7cm.
 - 5. Find the second derivative of $x^2 \log x$.
 - 6. Differentiate 'sin x' by the method of first principles.
 - 7. If S denotes the displacement of a particle at the time 't' seconds and $S = t^3 6t^2 + 8t 4$.
 - (i) Find the time when the acceleration is 12cm/sec².
 - (ii) The velocity at that time.

 $(5 \times 6 = 30)$

Marks

5

5

PART - C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

Unit — I

III (a) Prove that
$$\frac{\csc\theta}{\csc\theta - 1} + \frac{\csc\theta}{\csc\theta + 1} = 2 \sec^2\theta$$

- (b) If tan A = 3/4, sin B = 5/13. (A lies in the third quadrant and B lies in the second quadrant.) Find sin (A-B) and cos (A+B).
- (c) Evaluate cos 570 sin 510 sin 330 cos 390.

OR

- IV (a) Prove that $\frac{1 + \sin A}{\cos A} = \frac{\cos A}{1 \sin A}$
 - (b) Express $\sqrt{3} \sin x + \cos x$ in the form of R sin $(x + \alpha)$ where α is acute.
 - (c) Prove that $\sin (A + B) \sin (A B) = \sin^2 A \sin^2 B$.

Unit — II

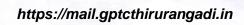
- V (a) Prove that $\frac{\sin 3A \sin A}{\cos 3A + \cos A} = \tan A$
 - (b) Prove that $\cos 80 \cos 60 \cos 40 \cos 20 = 1/16$
 - (c) Show that $a (b^2 + c^2) \cos A + b (c^2 + a^2) \cos B + c (a^2 + b^2) \cos C = 3abc$ 5

OR

- VI (a) Prove that $\frac{\cot A \tan A}{\cot A + \tan A} = \cos 2A$
 - (b) Show that $\sin 40 \sin 80 + \sin 20 = 0$
 - (c) Two angles of a triangular plot of land are 53° and 67° and the side between them is measured to be 100cm. How many meters of fencing is required to fence the plot?

Unit — III

VII (a) Evaluate (i)
$$\lim_{x \to \infty} \frac{3x+5}{x-2}$$
 (ii) Evaluate $\lim_{x \to 3} \frac{x^2-9}{x-3}$ (3 + 2)


(b) Find
$$\frac{dy}{dx}$$
 if (i) $x = at^2$, $y = 2at$.
(ii) $y = \frac{\sin 2x}{1 + \cos 2x}$ (3 + 2)

(c) If
$$y = a \sin x + b \cos x$$
. Prove that $\frac{d^2y}{dx^2} + y = 0$

			Mark
VIII	(a)	Find the derivative of 'sec x' using quotient rule.	5
	(b)	Find $\frac{dy}{dx}$ if (i) $y = \log(\sin \sqrt{x})$ (ii) $y = (x^3 + 3) \tan^{-1} x$	(3+2)
		If $ax^2 + by^2 + 2gx + 2fy + c = 0$, find $\frac{dy}{dx}$	5
		Unit IV	
IX	(a)	Find the equation to the tangent and normal to the curve $y = x^2 + 2x - 3at$ (2,5).	5
(b)	A circular plate of radius 3 inches expands when heated at the rate of 2 inches/second. Find the rate at which the area of the plate is increasing at the end of 3 seconds.	5	
	(c)	The deflection of a beam is given by $y = 2x^3 - 9x^2 + 12x$. Find the maximum deflection.	5
		Or	
X	(a)	Find the values of 'x' for which the tangent to the curve $y = \frac{x}{(1-x)^2}$ will be parallel to the x – axis.	5
	(b)	A balloon is spherical in shape. Gas is escaping from it at the rate of 10 cc/sec. How fast is the surface area shrinking when the radius is 15 cm?	5
	(c)	The perimeter of a rectangle is 100 m. Find the sides when the area is	
		maximum,	5

