

TED	(15) -	5045
(REVI:	SION —	- 2015)

Reg. No.	
Signature	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — OCTOBER, 2018

OPTICAL FIBRE COMMUNICATION

[Time: 3 hours

(Maximum marks: 100)

PART -- A

(Maximum marks: 10)

Marks

- I Answer all questions in one or two sentences. Each question carries 2 marks.
 - 1. Define acceptance angle.
 - 2. Define the term population inversion.
 - 3. List the types of optical amplifiers.
 - 4. List two applications of beam splitters.
 - 5. List the applications of optical isolators.

 $(5 \times 2 = 10)$

PART — B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. Explain step index and graded index optical fibres.
 - 2. Explain the different type of light rays passing through the optical fibre.
 - 3. Explain the principle of modulation of LED.
 - 4. Describe the working of LASER diode.
 - 5. Explain the properties of optical amplifiers.
 - 6. Draw the block diagram of optical transceivers.
 - Explain insertion loss method for the measurement of attenuation loss in optical fibre.

 $(5 \times 6 = 30)$

Marks

PART — C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

		(This wei one fair question from the same Line 1	
		Unit — I	
III	(a)	Write short notes on: (i) Absorption (ii) Scattering (iii) Dispersion	9
	(b)	Describe the principle of light transmission in optical fibre.	6
		OR	
IV	(a)	Explain single mode and multimode optical fibres.	8
	(b)	List the advantages of optical fibre communication.	7
		Unit — II	
V	(a)	Explain the working principle of avalanche photo diode.	8
	(b)	Explain the theory of LASER.	7
		OR	197
VI	(a)	Explain the structure and working of edge emitting LEDs.	8
	(b)	Explain the construction of laser diode.	7
		Unit — III	
VII	(a)	Explain the following optical amplifiers.	
		(i) SOA (ii) Raman Amplifiers	8
	(b)	Explain the block diagram of optical transmitter.	7
		OR	
VIII	(a)	Explain the principle of EDFA.	9
	(b)	Explain the basic concept of optical amplifiers.	6
		Unit — IV	
IX	(a)	Write short notes on :	
		(i) Connectors (ii) Splicers	8
	(b)	Explain inter and intra mode dispersion losses.	7
		OR	0
X	(a)	Explain bend losses occurred in optical fibre.	8
	(h)	Explain the working principle and application of directional couplers.	7