

B.T	4	Λ		A 0	4	n.	•
		ч	_	$\mathbf{A0}$		**	ı

TED (15) - 1002(REVISION — 2015)

Reg. No	 	
Signature	 	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — OCTOBER, 2019

ENGINEERING MATHEMATICS - I

[Time: 3 hours

(Maximum marks: 100)

PART — A

(Maximum marks: 10)

Marks

- I Answer all questions. Each question carries 2 marks.
 - 1. Prove that $\cos^2 A \sin^2 A = 2 \cos^2 A 1$.
 - 2. Write the expression for sin 3A.
 - 3. Prove that in any triangle ABC, $abc = 4R\Delta$.
 - 4. If $y = x \sin x$, Find $\frac{dy}{dx}$
 - 5. Find the velocity and acceleration at time 't' of a particle moving according to $s = 2t^3 3t^2 + 1$. (5×2 = 10)

PART — B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. Express $4 \cos x + 3 \sin x$ in the form $R \sin(x + \alpha)$ where α is acute.
 - 2. Prove that $\sin 10^{\circ} \sin 50^{\circ} \sin 70^{\circ} = \frac{1}{8}$.
 - 3. Prove that $(a b)\cos\frac{c}{2} = c \sin\frac{A-B}{2}$.
 - 4. Differentiate sin x by the method of first principles.
 - 5. Find $\frac{dy}{dx}$ if $(x^2 + y^2)^2 = xy$.
 - 6. Find the equation to the tangent and normal to the curve $y = 3x^2 + x 2$ at (1, 2).
 - 7. Prove that $\sin A + \sin(120^\circ + A) + \sin(240^\circ + A) = 0.$ (5×6 = 30)

Δ C	RΊ	Γ_	 (

Marks

5

5

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

Unit — I

- III (a) Prove that $\frac{\sin \theta}{1 + \cos \theta} + \frac{1 + \cos \theta}{\sin \theta} = 2 \csc \theta$.
 - (b) If θ is acute and $\sin \theta = 0.4$, find the value of $\sec \theta + \tan \theta$.
 - (c) If $A + B = 45^{\circ}$, show that $(1 + \tan A) (1 + \tan B) = 2$.

OR

- IV (a) Prove that $\frac{1+\cos\theta}{\sin\theta} = \frac{\sin\theta}{1-\cos\theta}$.
 - (b) If $\sin A = \frac{4}{5}$, $\sin B = \frac{12}{13}$; A, B are acute, find $\sin (A + B)$ and $\cos (A B)$.
 - (c) The horizontal distance between two towers is 60m and the angle of depression of the first tower as seen from the second which is in 150m height is 30°. Find the height of the first tower.

Unit - II

- V (a) Prove that $\frac{\sin 3A}{\sin A} \frac{\cos 3A}{\cos A} = 2$.
 - (b) Prove that $\tan A + \cot A = 2\csc 2A$.
 - (c) Show that $\frac{\sin 2A}{1+\cos 2A} = \tan A$ and deduce the value of tan 15°.

Or

- VI (a) Prove that $\frac{\sin A + \sin 3A + \sin 5A}{\cos A + \cos 3A + \cos 5A} = \tan 3A$
 - (b) Prove that $\sin A + \sin 3A + \sin 5A + \sin 7A = 4 \cos A \cos 2A \sin 4A$.
 - (c) Solve \triangle ABC, given a = 4cm, b = 5cm and c = 7cm.

Unit — III

- VII (a) Evaluate $\lim_{x\to 4} \frac{x^4 256}{x^3 64}$.
 - (b) If $x = a (\theta \sin \theta)$; $y = a(1 \cos \theta)$, show that $\frac{dy}{dx} = \cot \frac{\theta}{2}$
 - (c) If $y = A \cos px + B \sin px$, (A, B, p are constants), Show that $\frac{d^2y}{dx^2}$ is proportional to y.

3

Marks (a) Evaluate (i) $\lim_{x\to 0} \frac{1-\cos 2x}{x^2}$ (ii) $\lim_{x\to -1} \frac{x^3+1}{x+1}$ VIII (3+3=6)(b) Find $\frac{dy}{dx}$ if $y = (x^2 + x + 1)^7 \sin^2 x$. (c) If $y = Ae^{nx} + Be^{-nx}$ (A, B are constants), Show that $\frac{d^2y}{dx^2} - n^2y = 0$. 5 Unit — IV IX (a) A particle is projected vertically upwards and its height 'h' and time 't' are connected by $h = 60t - t^2$. Find the greatest height attained. 5 (b) A balloon is spherical in shape. Gas is escaping from it at the rate of 10cc/sec. How fast is the surface area shrinking when the radius is 15cm. 5 The deflection of a beam is $S = 2x^3 - 9x^2 + 12x$. Find the maximum deflection. 5 Find the velocity and acceleration of a particle at t = 3 seconds whose displacement X is given by $S = 3t^3 - t^2 + 9t + 1$. 5 (b) A spherical balloon is inflated by pumping 25cc of gas per second. Find the rate at which the radius of the balloon is increasing when the radius is 15cm. 5 (c) Find the maximum value of $2x^3 - 3x^2 - 36x + 10$. 5