

|     |   | 00044 |
|-----|---|-------|
| N19 | - | 00041 |

TED (15) - 2002 (REVISION — 2015)

Reg. No. .....

# DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/COMMERCIAL PRACTICE — OCTOBER, 2019

# **ENGINEERING MATHEMATICS - II**

[Time: 3 hours

(Maximum marks: 100)

PART — A

(Maximum marks: 10)

Marks

- I Answer all questions. Each question carries 2 marks.
  - 1. Find the length of the vector  $3\hat{i} + 4\hat{j} + \hat{k}$
  - 2. If  $\begin{vmatrix} x^2 & 3 \\ 4 & 1 \end{vmatrix} = \begin{vmatrix} 9 & 4 \\ 8 & 5 \end{vmatrix}$  find x.
  - 3.  $A\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ ,  $B = \begin{bmatrix} 0 & -2 \\ -3 & -3 \end{bmatrix}$ , find  $(A + B)^T$ .
  - 4. Find  $\int (3x^2 2x + 1) dx$ .
  - 5. Solve :  $\frac{dy}{dx} = ky$ .

 $(5 \times 2 = 10)$ 

PART — B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
  - 1. If  $\overrightarrow{a} = 2\overrightarrow{i} + 3\overrightarrow{j} \overrightarrow{k}$  and  $\overrightarrow{b} = 3\overrightarrow{i} + 4\overrightarrow{j} + 2\overrightarrow{k}$ .

    Calculate (i)  $(\overrightarrow{a} + \overrightarrow{b})$ .  $(\overrightarrow{a} \overrightarrow{b})$  (ii)  $(\overrightarrow{a} + \overrightarrow{b}) \times (\overrightarrow{a} \overrightarrow{b})$
  - 2. Find the coefficient of  $x^{32}$  in the expansion of  $\left(x^4 \frac{1}{x^3}\right)^{15}$ .
  - 3. Solve the following system of equations using determinants :

$$x + 2y - z = -3$$
,  $3x + y + z = 4$ ,  $x - y + 2z = 6$ 

4. Express the matrix  $A = \begin{bmatrix} 1 & 4 & 5 \\ 2 & 2 & 3 \\ 3 & 1 & 0 \end{bmatrix}$ , as the sum of a symmetric and skew symmetric matrices.







Marks

- 5. Evaluate  $\int_{0}^{\frac{\pi}{2}} \sin 3x \cos x \, dx.$
- 6. Find the volume of a sphere of radius r using integration.

7. Solve : 
$$\frac{dy}{dx} + y \ tanx = cosx$$
.

 $(5 \times 6 = 30)$ 

5

5

5

5

5

## PART — C

#### (Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

#### Unit — I

- III (a) Find the dot product and angle between the vectors  $\hat{i} = 2\hat{j} + 3\hat{k}$  and  $3\hat{i} = 2\hat{j} + \hat{k}$ 
  - (b) Find the moment of a force represented by  $\hat{i} + \hat{j} + \hat{k}$  acting through the point  $-2\hat{i} + 3\hat{j} + \hat{k}$  about the point  $\hat{i} + 2\hat{j} + 3\hat{k}$ .
  - (c) Find the middle term(s) in the expansion of  $(2x + \frac{3}{x})^9$ .

ΩR

IV (a) If  $\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}$  and  $\vec{b} = -\hat{i} + 3\hat{j} + 2\hat{k}$  find the unit vector in the direction of the vector  $3\vec{a} + 4\vec{b}$ 

(b) Find the work done by the force  $\vec{F} = \hat{i} + 2\hat{j} + \hat{k}$  acting on a particle which is displaced from the point with position vector  $2\hat{i} + \hat{j} + \hat{k}$  to the point with position vector  $3\hat{i} + 2\hat{j} + 4\hat{k}$ .

(c) Expand  $\left(x^3 - \frac{1}{x^2}\right)^5$  using binomial theorem.

5

## Unit — II

- V (a) Find the inverse of  $\begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$ .
  - (b) If  $A = \begin{bmatrix} 3 & 1 & -1 \\ 0 & 1 & 2 \end{bmatrix}$  show that A.  $A^{T}$  is symmetric.

(c) Solve:  $\frac{5}{x} + \frac{2}{y} = 4$ ;  $\frac{2}{x} - \frac{1}{y} = 7$ .

5

5

5

5 .

5

- VI (a) Solve for x if  $\begin{vmatrix} 3 & 1 & 9 \\ 2x & 2 & 6 \\ x^2 & 3 & 3 \end{vmatrix} = 0$ .
  - (b) If  $A = \begin{bmatrix} 1 & 2 & 3 \\ -4 & 5 & -1 \end{bmatrix}$  and  $B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ -1 & 1 \end{bmatrix}$ . Find AB and BA. Prove that  $AB \neq BA$  5

OR

(c) Find A and B if  $A + B = \begin{bmatrix} 4 & 6 \\ 2 & 3 \end{bmatrix}$  and  $A - B = \begin{bmatrix} -2 & 8 \\ 4 & -1 \end{bmatrix}$ .





3

Marks

Unit — III

VII (a) Evaluate (i) 
$$\int \sin^2 x dx$$
 (ii)  $\int \frac{x^2+2}{x} dx$ . (3 + 2 = 5)

(b) Evaluate 
$$\int_{0}^{\frac{\pi}{2}} \sqrt{1 + \sin 2x} \, dx.$$

(c) Evaluate 
$$\int x^2 \log x dx$$
.

 $\mathbf{O}_{\mathsf{R}}$ 

VIII (a) Evaluate (i) 
$$\int \frac{\sec^2 x}{\sqrt{1-\tan^2 x}} dx$$
 (ii) 
$$\int \sin x + \frac{1}{x} + \csc^2 x dx$$
 (3 + 2 = 5)

(b) Evaluate 
$$\int \frac{2x^4}{1+x^{10}} dx$$
.

(c) Evaluate 
$$\int_0^1 \frac{1-2x}{x^2-x+1} dx$$
.

IX (a) Find the area enclosed by the curve 
$$y = x^2$$
 and the straight line  $y = 3x + 4$ .

(b) Find the volume of the solid obtained by rotating one arch of the curve 
$$y = sinx$$
 about the  $x - axis$ .

(c) Solve: 
$$(x^2 + 1)\frac{dy}{dx} + 2xy = 4x^2$$
.

X (a) Find the area enclosed between the parabola 
$$y = x^2 - x - 2$$
 and the  $x - axis$ .

(b) Solve : 
$$\frac{d^2y}{dx^2} = \csc^2 x.$$

(c) Solve: 
$$x(1 + y^2)dx + y(1 + x^2) dy = 0$$
.