

NI	9 _	nn	539
111.	,	vv	

TED (15) - 4041

(REVISION — 2015)

Pag No			
Reg. 140.			
Sionature			

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/COMMERCIAL PRACTICE — OCTOBER, 2019

ELECTRONICS INSTRUMENTS AND MEASUREMENTS

[Time: 3 hours

(Maximum marks: 100)

PART — A

(Maximum marks: 10)

Marks

- I Answer all questions in one or two sentences. Each question carries 2 marks.
 - 1. Define the term precision of an instrument.
 - 2. Write two specifications of analog multimeter.
 - 3. List the application of CRO.
 - 4. What is spectrum analyser?
 - 5. List different types of DAS.

 $(5 \times 2 = 10)$

PART — B

(Maximum marks : 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. Explain the conversion of galvanometer into voltmeter and deduce the relation for the resistance.
 - 2. List the specifications of a digital multimeter.
 - 3. Draw the functional block diagram of CRO and explain the working of each block.
 - 4. Explain the working principle of microphone type transducer.
 - 5. Explain the principle of measuring frequency using wien bridge.
 - 6. List the application of logic analyser.
 - 7. Explain the role of telemetry in instrumentation system.

 $(5 \times 6 = 30)$

[P.T.O.

2

		PART — C	Mark
		(Maximum marks : 60)	
		(Answer one full question from each unit. Each full question carries 15 marks,)	
		Unit — I	
III	(a)	Differentiate moving coil and moving iron instruments.	6
	(b)	Explain the working of analog multimeter with neat diagram.	9
		O_R	
IV	(a)	Draw the block diagram of digital frequency meter and explain the working of each block.	9
	(b)	Draw the block diagram of digital multimeter.	6
		Unit — II	
V	(a)	Draw the cross sectional view of CRT used in CRO and explain its working.	8
	(b)	Explain the working principle of capacitive transducer.	7
		Or	•
VI	(a)	Explain the working principle of LVDT with neat figure.	8
	(b)	Illustrate the working of DSO with relevant figure.	7
		Unit — III	
VII	(a)	Explain the resistance measurement using Wheatstone's bridge.	8
	(b)	List the applications of spectrum analyser.	7
		OR	
VIII	(a)	Explain the principle of capacitance measurement using Schering bridge.	8
	(b)	Draw the block diagram of function generator and explain each block.	7
		Unit — IV	
IX	(a)	Explain the working of X-Y recorder with relevant figure.	6
	(b)	Explain the block diagram of basic instrumentation system.	9
	••	O_R	
X	(a)	Differentiate closed loop and open loop control system.	6
	(b)	Explain the block diagram of digital DAS.	9