

N	1	Q_	$\Omega\Omega$	92	4

TED (15) - 4133

(REVISION — 2015)

Reg. No.	

Signature

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — OCTOBER, 2019

DATA STRUCTURES

[Time: 3 hours

(Maximum marks: 100)

PART — A

(Maximum marks: 10)

Marks

- I Answer all questions in one or two sentences. Each question carries 2 marks.
 - 1. Define complexity of an algorithm.
 - 2. List four basic data structure operations.
 - 3. Give pictorial representation of a circular linked list.
 - 4. Define a binary tree.
 - 5. Differentiate indegree and outdegree of a directed graph.

 $(5 \times 2 = 10)$

PART — B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. Define data structure. Comparé Linear and Non-linear data structures.
 - 2. Describe a List ADT with find() and printList() functions.
 - 3. Explain a linked list with insertion and deletion of a new node at beginning.
 - 4. Explain linked representation of binary trees.
 - 5. Describe expression trees.
 - 6. Discuss directed and weighted graph.
 - 7. Explain binary search algorithm.

 $(5 \times 6 = 30)$

Marks

PART — C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

Unit — I

III	(a)	Describe a queue ADT with insert and delete operations.		
	(b)	Explain infix, prefix and postfix notations. Using stack, evaluate the postfix expression 2 3, 4 + * 6 -	7	
		${ m O}_{ m R}$		
IV	(a)	Describe a stack ADT with push and pop operations.	8	
	(b)	Explain priority queue and dequeue with suitable examples.	. 7	
		Unit — II		
V	(a)	Explain the algorithm to implement a stack using LinkedList ADT.	8	
,	(b)	Describe a doubly linked list. Explain how memory is allocated and deallocated for a linked list node.	7	
		OR		
VI	Exp	ain a LinkedList ADT with insert(), delete(), find() and printList() operations.	15	
		Unit — III		
VII	(a)	Explain a BST ADT traversal algorithms with a neat diagram.	8	
	(b)	Draw a complete binary tree and explain the following terms. (i) degree of a node (ii) Level of a tree (iii) depth of a node (iv) sibling of a node	,	
		OR		
VIII	(a)	Describe binary search trees. Explain the deletion of a node from BST.	8	
	(b)	Explain threaded binary trees with the help of an example.	7	
		Unit — IV		
IX	(a)	Explain adjacency matrix and adjacency list representation of a graph.	8	
	(b)	Explain Warshall's algorithm for all-pairs shortest path.	7	
		O_R		
. X	(a)	Explain DFS and BFS graph traversal algorithms.	8	
	(h)	Explain how a set of numbers can be sorted using quick sort method	7	