

S. S		
		https://mail.gptcthirurangadi.in

N19 - 00492

TED(15) - 5045(REVISION — 2015)

Reg. No.	
Signature	

DIPLOMA EXAMINATION ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — OCTOBER, 2019

OPTICAL FIBRE COMMUNICATION

[Time: 3 hours

(Maximum marks: 100)

PART — A

(Maximum marks: 10)

Marks

- Answer all questions in one or two sentences. Each question carries 2 marks.
 - 1. Define Numerical Aperture.
 - 2. Describe absorption.
 - 3. Draw the structure of Surface Emmitting LED.
 - 4. Draw the Block diagram of Optical receiver.
 - 5. Describe dispersion.

 $(5 \times 2 = 10)$

PART — B

(Maximum marks: 30)

- Answer any five of the following questions. Each question carries 6 marks.
 - 1. Explain Fiber Bend Losses.
 - 2. Briefly explain the Skew rays and Meridional rays.
 - 3. Briefly explain advantages of Erbium Doped Fiber Amplifier.
 - 4. Explain the structure and working principle of PIN photo diode.
 - 5. Explain optical fiber communication system.
 - 6. Briefly explain Optical Modulators.
 - 7. Explain the theory of Laser action.

 $(5 \times 6 = 30)$

Marks

PART — C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

		1	
		Unit — I	
III	(a)	Explain various Optical Fiber types.	8
	(b)	Briefly explain the advantages of Optical Fiber.	7
		Or	
IV	(a)	Describe total internal reflection and acceptance angle.	9
	(b)	Briefly explain the optical fiber configurations and Modes.	6
		Unit — II	
V	(a)	Explain the Modulation of LED.	7
	(b)	Explain the structure and working principle of Avalanche photo diode.	8
		$O_{ m R}$	
VI	(a)	Briefly explain different types of LED Structures.	12
	(b)	Explain the principle of Photo detection.	3
		Unit — III	
VII	(a)	Briefly explain the Wave length Division Multiplexing.	9
	(b)	Explain the basic concept of optical Amplifiers.	6
•		Or	
VIII	(a)	Explain Optical Transmitters and Optical Receivers.	8
	(b)	Explain the working principle of Erbium Doped Fiber Amplifier. (EDFA)	7
		Unit — IV	
IX	(a)	Explain intra and inter mode dispersion losses in optical transmission.	8
	(b)	Explain the principle of Optical fiber directional coupler.	7
		OR	
X	(a)	Explain the cut back method of measurement of attenuation losses in optical transmission.	7
	(b)	Describe Optical isolators and optical circulators.	8