

TED (15) 2002 (Revision-2015/19)

A21-00685

F	Reg.No	•
S	ignature	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE, APRIL-2021

ENGINEERING MATHEMATICS - II

[Maximum marks: 75]

(Time: 2.15 Hours)

PART-A

I (Answer any three questions. Each question carries 2 marks)

1. If
$$\vec{a} = \hat{\imath} + \hat{\jmath} + \hat{k}$$
, $\vec{b} = 2\hat{\imath} - \hat{\jmath} + 3\hat{k}$, find \vec{a} . \vec{b} .

2. If
$$\begin{vmatrix} 3x & 7 \\ 2 & 3 \end{vmatrix} = 0$$
 find x.

3. If
$$A - \begin{bmatrix} 3 & 5 \\ 2 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$
 find A.

4. Evaluate
$$\int_0^1 xe^x dx$$
.

5. Solve
$$\frac{dy}{dx} = 5$$
.

 $(3 \times 2 = 6)$

PART - B

II (Answer any four of the following questions. Each question carries 6 marks)

- 1. Find the area of the triangle whose vertices are $A(\hat{i} \hat{k})$, $B(2\hat{i} + \hat{j} + 5\hat{k})$ and $C(\hat{j} + 2\hat{k})$.
- 2. Find the constant term in the expansion of $(x^2 \frac{1}{x})^9$.
- 3. Solve the following equations using determinants. x + y 4z = -8, -4x + y + z = 2, x 4y + z = -3.

4. If
$$A = \begin{bmatrix} 3 & 1 & 2 \\ -1 & 2 & 3 \\ 2 & -5 & 7 \end{bmatrix}$$
 and $B = \begin{bmatrix} -2 & 4 & 1 \\ 3 & -1 & 2 \\ 4 & 1 & 3 \end{bmatrix}$ be two matrices. Compute

the product AB and BA. Do AB and BA commute?

5. Evaluate $\int_0^{\frac{\pi}{2}} \sin 3x \cos x \ dx$.

- 6. Find the area enclosed between the curve $y = x^2$ and the straight line y = 3x + 4.
- 7. Solve $(1+x^2)\frac{dy}{dx} + y = e^{tan^{-1}x}$.

 $(4 \times 6 = 24)$

5

5

PART-C

(Answer any of the three units from the following. Each full question carries 15 marks)

UNIT - I

- III (a) Find the value of λ so that the two vectors $2\hat{\imath} + 3\hat{\jmath} \hat{k}$ and $4\hat{\imath} + 6\hat{\jmath} \lambda \hat{k}$ are parallel.
 - (b) A particle acted on by two forces $4 \hat{i} + \hat{j} 3\hat{k}$ and $3\hat{i} + \hat{j} \hat{k}$ is displaced from the point $\hat{i} + 2\hat{j} + \hat{k}$ to the point $5\hat{i} + 4\hat{j} + \hat{k}$. Find the total work done by the forces.
 - (c) Find the middle term(s) in the expansion of $(3x \frac{x^3}{6})^7$.

OR

- IV (a) If $\vec{a} = 5\hat{\imath} \hat{\jmath} 3\hat{k}$, $\vec{b} = \hat{\imath} + 3\hat{\jmath} 5\hat{k}$ show that the vectors $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ are perpendicular to each other.
 - (b) A force $\vec{F} = 4\hat{\imath} 3\hat{k}$ passes through the point 'A' whose position vector is $2\hat{\imath} 2\hat{\jmath} + 5\hat{k}$. Find the moment of the force about the point 'B' whose position vector is $\hat{\imath} 3\hat{\jmath} + \hat{k}$.
 - (c) Expand $(3a+2b)^4$ binomially.

UNIT - II

- V (a) Solve $\frac{2}{x} + \frac{3}{y} = 5$, $\frac{2}{x} + \frac{5}{y} = 3$ using determinants.
 - (b) If $A(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$ show that $A(\theta)A(\theta') = A(\theta + \theta')$.
 - (c) Find the adjoint of the matrix = $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{bmatrix}$ 5

OR

VI (a) If
$$\begin{vmatrix} 2 & 1 & x \\ 3 & -1 & 2 \\ 1 & 1 & 6 \end{vmatrix} = \begin{vmatrix} 4 & x \\ 3 & 2 \end{vmatrix}$$
, find x. 5

(b) If $A = \begin{bmatrix} 1 & 0 & 5 \\ -2 & 1 & 6 \\ 3 & 2 & 7 \end{bmatrix}$ compute $A + A^T$. Show that $A + A^T$ is symmetric. 5

(c) If $A = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}$ find $A^3 - 3A^2 + 2A + I$. 5

VIII (a) Evaluate $\int cosecx \, dx$. 5

(b) Evaluate $\int \frac{x^2}{(1+x^2)^3} \, dx$. 5

(c) Evaluate $\int \frac{cosx}{\sqrt{sfinx}} \, dx$. 7

(d) Evaluate $\int \frac{cosx}{\sqrt{sfinx}} \, dx$. 7

(e) Evaluate $\int x^3 logx \, dx$. 7

(f) Evaluate $\int x^3 logx \, dx$. 7

(g) Evaluate $\int x^3 logx \, dx$. 7

IX (a) Find the area enclosed by one arch of the curve $y = 3 sin2x$ and the x-axis. 7

(b) Find the volume of the solid generated by the rotation of the area bounded by the curve $y = 2 cosx$, the x-axis and the lines $x = 0$, $x = \frac{\pi}{4}$ about the x-axis. 7

(c) Solve $\frac{dy}{dx} = 4x - 7$. (Given $y = 3$ when $x = 1$). 7

OR

X (a) Find the volume of a right circular cone of height 'h' and base radius 'r' using integration. 7

(b) Solve $\frac{dx}{dx^2} = cosec^2x$. 5
